Abstract

Optical coherence-domain reflectometry and laser-based ultrasound detection have been combined with the use of adaptive optics to detect ultrasound through turbid media. The dynamic hologram in a photorefractive quantum-well device performs as a coherence gate that eliminates multiply scattered background. Quadrature homodyne detection conditions are selected by the choice of center wavelength of the pulse spectrum, requiring no active stabilization or feedback. A depth resolution of 30 µm was achieved, with a pulse duration of nominally 120 fs for ultrasound detection through turbid media up to optical thicknesses of 11 mean free scattering lengths.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Webb, The Physics of Medical Imaging (Institute of Physics, Bristol, UK, 1988).
    [CrossRef]
  2. M. Hisaka, T. Sugiura, and S. Kawata, J. Opt. Soc. Am. A 18, 1531 (2001).
    [CrossRef]
  3. A. Lev, Z. Kotler, and B. G. Sfez, Opt. Lett. 25, 378 (2000).
    [CrossRef]
  4. L. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
    [CrossRef] [PubMed]
  5. M. E. Brezinski and J. G. Fujimoto, IEEE J. Sel. Top. Quantum Electron. 5, 1185 (1999).
    [CrossRef]
  6. R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
    [CrossRef]
  7. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
    [CrossRef]
  8. D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 18, 195 (2001).
    [CrossRef]
  9. R. Jones, D. D. Nolte, and M. R. Melloch, Appl. Phys. Lett. 77, 3692 (2000).
    [CrossRef]

2001 (2)

2000 (2)

R. Jones, D. D. Nolte, and M. R. Melloch, Appl. Phys. Lett. 77, 3692 (2000).
[CrossRef]

A. Lev, Z. Kotler, and B. G. Sfez, Opt. Lett. 25, 378 (2000).
[CrossRef]

1999 (1)

M. E. Brezinski and J. G. Fujimoto, IEEE J. Sel. Top. Quantum Electron. 5, 1185 (1999).
[CrossRef]

1998 (1)

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

1995 (1)

1991 (1)

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Bacher, G. D.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, IEEE J. Sel. Top. Quantum Electron. 5, 1185 (1999).
[CrossRef]

Cubel, T.

Fujimoto, J. G.

M. E. Brezinski and J. G. Fujimoto, IEEE J. Sel. Top. Quantum Electron. 5, 1185 (1999).
[CrossRef]

Hisaka, M.

Ing, R. K.

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Jacques, S. L.

Jones, R.

R. Jones, D. D. Nolte, and M. R. Melloch, Appl. Phys. Lett. 77, 3692 (2000).
[CrossRef]

Kawata, S.

Klein, M. B.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

Kotler, Z.

Kruger, R. A.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

Lahiri, I.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

Lev, A.

Melloch, M. R.

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 18, 195 (2001).
[CrossRef]

R. Jones, D. D. Nolte, and M. R. Melloch, Appl. Phys. Lett. 77, 3692 (2000).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

Monchalin, J.-P.

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Nolte, D. D.

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 18, 195 (2001).
[CrossRef]

R. Jones, D. D. Nolte, and M. R. Melloch, Appl. Phys. Lett. 77, 3692 (2000).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

Pyrak-Nolte, L. J.

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 18, 195 (2001).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

Sfez, B. G.

Sugiura, T.

Wang, L.

Webb, S.

S. Webb, The Physics of Medical Imaging (Institute of Physics, Bristol, UK, 1988).
[CrossRef]

Zhao, X.

Appl. Phys. Lett. (3)

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, Appl. Phys. Lett. 73, 1041 (1998).
[CrossRef]

R. Jones, D. D. Nolte, and M. R. Melloch, Appl. Phys. Lett. 77, 3692 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Brezinski and J. G. Fujimoto, IEEE J. Sel. Top. Quantum Electron. 5, 1185 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

S. Webb, The Physics of Medical Imaging (Institute of Physics, Bristol, UK, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-wave mixing response: (a) in the small-signal limit as a function of the ratio of reference to signal intensity for several ratios of incoherent erasure intensity to signal intensity, (b) in the Joule-heating limit for two erasure conditions.

Fig. 2
Fig. 2

Schematic of the experimental setup for femtosecond homodyne detection: PT, piezoelectric transducer; TM, turbid medium; BS’s, beam splitter; ND’s, neutral-density filters; M’s, mirrors; APD, avalanche photodetector; PRQW, photorefractive quantum well.

Fig. 3
Fig. 3

Homodyne signal as a function of reference-arm displacement for top, femtosecond pulses and for bottom, a cw diode laser for an optical thickness of 6 MFPs.

Fig. 4
Fig. 4

LBU signal versus increasing optical thickness from 0.59 to 11 MFPs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Shω,t=δΩt8πλexpiα0ωLηω1/2×Sr0ωSs0ω1/2×sinω0-ωτ+ξω+ϕp+π/2,
ITWMIsββ+Iincoh/Is+1,

Metrics