Abstract

Nondestructive images of refractive-index variation within a type I fiber Bragg grating have been recorded by the differential interference contrast imaging technique. The images reveal detailed structure within the fiber core that is consistent with the formation of Talbot planes in the diffraction pattern behind the phase mask that had been used to fabricate the grating.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Dyer, R. J. Farely, and R. Giedl, Opt. Commun. 115, 327 (1995).
    [CrossRef]
  2. M. Mansuripur, Classical Optics and Its Applications (Cambridge U. Press, Cambridge, 2002), pp. 251–262.
  3. A. Othonos and K. Kyriacos, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999), pp. 11–12.
  4. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, Appl. Opt. 39, 6128 (2000).
    [CrossRef]
  5. Ref. 3, p. 154.
  6. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18, 1277 (1993).
    [CrossRef] [PubMed]
  7. Ref. 3, p. 97.
  8. M. Pluta, Advanced Light Microscopy: Specialized Methods (Elsevier, Amsterdam, 1989), Vol. 2.

2000 (1)

1995 (1)

P. D. Dyer, R. J. Farely, and R. Giedl, Opt. Commun. 115, 327 (1995).
[CrossRef]

1993 (1)

Albert, J.

Bilodeau, F.

Blott, B. H.

Brocklesby, W. S.

Dyer, P. D.

P. D. Dyer, R. J. Farely, and R. Giedl, Opt. Commun. 115, 327 (1995).
[CrossRef]

Farely, R. J.

P. D. Dyer, R. J. Farely, and R. Giedl, Opt. Commun. 115, 327 (1995).
[CrossRef]

Giedl, R.

P. D. Dyer, R. J. Farely, and R. Giedl, Opt. Commun. 115, 327 (1995).
[CrossRef]

Hill, K. O.

Hillman, C. W. J.

Johnson, D. C.

Kyriacos, K.

A. Othonos and K. Kyriacos, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999), pp. 11–12.

Malo, B.

Mansuripur, M.

M. Mansuripur, Classical Optics and Its Applications (Cambridge U. Press, Cambridge, 2002), pp. 251–262.

Mills, J. D.

Othonos, A.

A. Othonos and K. Kyriacos, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999), pp. 11–12.

Pluta, M.

M. Pluta, Advanced Light Microscopy: Specialized Methods (Elsevier, Amsterdam, 1989), Vol. 2.

Appl. Opt. (1)

Opt. Commun. (1)

P. D. Dyer, R. J. Farely, and R. Giedl, Opt. Commun. 115, 327 (1995).
[CrossRef]

Opt. Lett. (1)

Other (5)

Ref. 3, p. 97.

M. Pluta, Advanced Light Microscopy: Specialized Methods (Elsevier, Amsterdam, 1989), Vol. 2.

M. Mansuripur, Classical Optics and Its Applications (Cambridge U. Press, Cambridge, 2002), pp. 251–262.

A. Othonos and K. Kyriacos, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999), pp. 11–12.

Ref. 3, p. 154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Writing history of the type I fiber Bragg grating used for imaging. The writing conditions are described in the text.

Fig. 2
Fig. 2

Schematic diagram identifying the direction of the microscope beam used for the images shown in Fig. 3.

Fig. 3
Fig. 3

Unprocessed DIC images of the core region of a fiber Bragg grating. (a) The fiber rotation has been selected such that the image is taken from a direction orthogonal to that of the writing beam. (b) The same fiber Bragg grating, after the fiber has been rotated about its axis by 90°. (The dimensions of the images are approximately 500×900 pixels, covering 23 µm×40 µm.)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ZTm,n=2π/k2-m2G21/2-k2-n2G21/2,

Metrics