Abstract

A new refractometer has been developed based on changes in the effective refractive index (RI) of the highest-order TE (or TM) mode in a prism-coupled multimode planar waveguide induced by interaction between an evanescent field and a liquid sample. The waveguide was a 100µm-thick quartz plate fixed on a poly(methyl methacrylate) support containing a flow cell. A pair of prism couplers contacted the quartz plate in the flow-cell region. Such an optical sensor can detect the RI of liquid in a wide range by monitoring the resonant angle of the highest-order mode that changes order number with changes in the sample’s RI. When a highest-order mode corresponding to a given RI range is used as the sensor probe, a slight RI change in this range can be detected by measurement of the output light intensity. With this method the sensor was demonstrated to have a resolution of 3×10-5 for the RI of an aqueous solution. Combining this result with theoretical calculation indicates that the sensor can detect a 0.5-nm-thick monolayer adsorbed from an aqueous solution. Therefore, the sensor is suitable for real-time detection of biomolecular interactions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz, Sens. Actuators B 29, 37 (1995).
    [CrossRef]
  2. Z.-M. Qi, K. Itoh, M. Murabayashi, and H. Yanagi, J. Lightwave Technol. 18, 1106 (2000).
    [CrossRef]
  3. K. Kato, A. Takatsu, and N. Matsuda, Chem. Lett. 1999, 31.
  4. A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
    [CrossRef]

2000

1999

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

1995

W. Lukosz, Sens. Actuators B 29, 37 (1995).
[CrossRef]

Barzen, C.

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Brecht, A.

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Gauglitz, G.

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Harris, R. D.

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Itoh, K.

Kato, K.

K. Kato, A. Takatsu, and N. Matsuda, Chem. Lett. 1999, 31.

Klotz, A.

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Lukosz, W.

W. Lukosz, Sens. Actuators B 29, 37 (1995).
[CrossRef]

Matsuda, N.

K. Kato, A. Takatsu, and N. Matsuda, Chem. Lett. 1999, 31.

Murabayashi, M.

Qi, Z.-M.

Quigley, G. R.

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Takatsu, A.

K. Kato, A. Takatsu, and N. Matsuda, Chem. Lett. 1999, 31.

Wilkinson, J. S.

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Yanagi, H.

Chem. Lett.

K. Kato, A. Takatsu, and N. Matsuda, Chem. Lett. 1999, 31.

J. Lightwave Technol.

Proc. SPIE

A. Klotz, C. Barzen, A. Brecht, R. D. Harris, G. R. Quigley, J. S. Wilkinson, and G. Gauglitz, Proc. SPIE 3620, 345 (1999).
[CrossRef]

Sens. Actuators B

W. Lukosz, Sens. Actuators B 29, 37 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental configuration of the sensor. PMMA, poly(methyl methacrylate).

Fig. 2
Fig. 2

Measured signal attenuation versus solution RI in the case of the highest-order TE mode. The inset shows a linear relationship in a very small RI range.

Fig. 3
Fig. 3

Sensor response to the solution RI change. (a) Δn=3.35×10-5, (b) Δn=1.16×10-3.

Fig. 4
Fig. 4

Calculated effective RI of the highest-order mode TE186 versus solution RI.

Fig. 5
Fig. 5

Calculated effective RI of the highest-order mode TE186 versus adlayer thickness. The adlayer RI is assumed to be equal to quartz RI.

Fig. 6
Fig. 6

Highest-order number of the TE mode versus solution RI. The inset shows stepped changes in a small RI range.

Fig. 7
Fig. 7

Measured signal attenuation versus solution RI in the case of the highest-order TM mode.

Metrics