Abstract

We propose the use of synchronously moving micro-optics (lenslet arrays) for image pickup and display in three-dimensional integral imaging to overcome the upper resolution limit imposed by the Nyquist sampling theorem. With the proposed technique, we show experimentally that the viewing resolution can be improved without reducing the three-dimensional viewing aspect of the reconstructed image.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuma, Appl. Opt. 36, 1598 (1997).
    [CrossRef] [PubMed]
  3. F. Okano, H. Hoshino, J. Arai, and I. Yuma, Opt. Eng. 38, 1072 (1999).
    [CrossRef]
  4. H. Arimoto and B. Javidi, Opt. Lett. 26, 157 (2001).
    [CrossRef]
  5. N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
    [CrossRef]
  6. J. Arai, F. Okano, H. Hoshino, and I. Yuma, Appl. Opt. 37, 2034 (1998).
    [CrossRef]
  7. C. B. Burckhardt, J. Opt. Soc. Am. 58, 71 (1968).
  8. T. Okoshi, Appl. Opt. 10, 2284 (1971).
    [CrossRef] [PubMed]
  9. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, J. Opt. Soc. Am. A 15, 2059 (1998).
    [CrossRef]
  10. J.-S. Jang and B. Javidi, “Improved quality three-dimensional integral imaging and projection using non-stationary optical components,” Proc. SPIE 4660, (to be published).

2001

1999

F. Okano, H. Hoshino, J. Arai, and I. Yuma, Opt. Eng. 38, 1072 (1999).
[CrossRef]

1998

1997

1994

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

1971

1968

1908

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

Arai, J.

Arimoto, H.

Brewin, M.

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

Burckhardt, C. B.

Davies, N.

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

Hoshino, H.

Isono, H.

Jang, J.-S.

J.-S. Jang and B. Javidi, “Improved quality three-dimensional integral imaging and projection using non-stationary optical components,” Proc. SPIE 4660, (to be published).

Javidi, B.

H. Arimoto and B. Javidi, Opt. Lett. 26, 157 (2001).
[CrossRef]

J.-S. Jang and B. Javidi, “Improved quality three-dimensional integral imaging and projection using non-stationary optical components,” Proc. SPIE 4660, (to be published).

Lippmann, G.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

McCormick, M.

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

Okano, F.

Okoshi, T.

Yuma, I.

Yuyama, I.

Appl. Opt.

C. R. Acad. Sci.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

F. Okano, H. Hoshino, J. Arai, and I. Yuma, Opt. Eng. 38, 1072 (1999).
[CrossRef]

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

Opt. Lett.

Proc. SPIE

J.-S. Jang and B. Javidi, “Improved quality three-dimensional integral imaging and projection using non-stationary optical components,” Proc. SPIE 4660, (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Direct pickup and display in II.

Fig. 2
Fig. 2

Optical setup for study of the effect of moving lenslet arrays.

Fig. 3
Fig. 3

3-D objects used in the experiments.

Fig. 4
Fig. 4

Experimental results for the reconstructed 3-D images when the lenslet arrays are (a) fixed, (b) moving in the horizontal direction, (c) tilted and fixed, and (d) tilted and moving in the horizontal direction.

Fig. 5
Fig. 5

Detection of the reconstructed 3-D image with a screen when the screen is positioned at the image plane of (a) the footprint and (b) the die surface. The lenslet arrays are fixed.

Fig. 6
Fig. 6

Detection of the reconstructed 3-D image with the iris opened maximally (a) when the footprint is in focus and (b) when the die surface is in focus.

Fig. 7
Fig. 7

Calculation of the sampling width (the size of each subimage that we can see through each lenslet).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

βnyqL/2p
w=gL2L1+L2aL1+bL2.

Metrics