Abstract

A tunable external-cavity Littrow diode laser, with an intracavity electro-optical crystal, which combines a large mode-hop-free tuning range with high tuning speeds and high tuning accuracy, has been designed. A mode-hop-free single-mode tuning range of 50 GHz at 793 nm with an output power of 60 mW and tuning speeds of 1.5 GHz/µs is demonstrated. The instantaneous linewidth is smaller than 300 kHz. Generally mode-hop-free tuning is obtained when the elongation of the cavity is proportional to the cavity length measured anywhere across the beam. This elongation is achieved with an intracavity crystal in which the thickness, and thus the electric field inside it, varies across the beam.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Menager, I. Lorgere, J. L. Le Gouet, D. Dolfi, and J. P. Huignard, Opt. Lett. 26, 1245 (2001).
    [CrossRef]
  2. N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion doped inorganic crystals,” Opt. Commun. (to be published).
  3. W. R. Trutna and L. F. Stokes, J. Lightwave Technol. 11, 1279 (1993).
    [CrossRef]
  4. A. T. Schremer and C. L. Tang, IEEE Photon. Technol. Lett. 2, 3 (1990).
    [CrossRef]
  5. B. Boggs, C. Greiner, T. Wang, H. Lin, and T. W. Mossberg, Opt. Lett. 23, 1906 (1998).
    [CrossRef]
  6. L. Menager, L. Cabaret, I. Lorgere, and J. L. Le Gouet, Opt. Lett. 25, 1246 (2000).
    [CrossRef]
  7. L. Levin, “Construction and design of an electro-optically tunable mode-hop-free external cavity diode laser,” (Master’s thesis, LTH, Lund, Sweden, 2000).
  8. E. G. Loewen, M. Neviere, and D. Maystre, Appl. Opt. 16, 2711 (1997).
    [CrossRef]

2001 (1)

2000 (1)

1998 (1)

1997 (1)

1993 (1)

W. R. Trutna and L. F. Stokes, J. Lightwave Technol. 11, 1279 (1993).
[CrossRef]

1990 (1)

A. T. Schremer and C. L. Tang, IEEE Photon. Technol. Lett. 2, 3 (1990).
[CrossRef]

Boggs, B.

Cabaret, L.

Dolfi, D.

Greiner, C.

Huignard, J. P.

Kröll, S.

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion doped inorganic crystals,” Opt. Commun. (to be published).

Le Gouet, J. L.

Levin, L.

L. Levin, “Construction and design of an electro-optically tunable mode-hop-free external cavity diode laser,” (Master’s thesis, LTH, Lund, Sweden, 2000).

Lin, H.

Loewen, E. G.

Lorgere, I.

Maystre, D.

Menager, L.

Mohan, R. K.

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion doped inorganic crystals,” Opt. Commun. (to be published).

Mossberg, T. W.

Neviere, M.

Ohlsson, N.

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion doped inorganic crystals,” Opt. Commun. (to be published).

Schremer, A. T.

A. T. Schremer and C. L. Tang, IEEE Photon. Technol. Lett. 2, 3 (1990).
[CrossRef]

Stokes, L. F.

W. R. Trutna and L. F. Stokes, J. Lightwave Technol. 11, 1279 (1993).
[CrossRef]

Tang, C. L.

A. T. Schremer and C. L. Tang, IEEE Photon. Technol. Lett. 2, 3 (1990).
[CrossRef]

Trutna, W. R.

W. R. Trutna and L. F. Stokes, J. Lightwave Technol. 11, 1279 (1993).
[CrossRef]

Wang, T.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

A. T. Schremer and C. L. Tang, IEEE Photon. Technol. Lett. 2, 3 (1990).
[CrossRef]

J. Lightwave Technol. (1)

W. R. Trutna and L. F. Stokes, J. Lightwave Technol. 11, 1279 (1993).
[CrossRef]

Opt. Lett. (3)

Other (2)

L. Levin, “Construction and design of an electro-optically tunable mode-hop-free external cavity diode laser,” (Master’s thesis, LTH, Lund, Sweden, 2000).

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion doped inorganic crystals,” Opt. Commun. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a), (c), (e), (g) different ways of moving the grating. (b), (d), (f), (h) corresponding changes in wavelength.

Fig. 2
Fig. 2

(a) Schematic of the laser. The electro-optical crystal’s thickness decreases in the y direction. (b) The line with the dots is a recording of a 50-GHz-wide scan. The sawtooth line shows how the tuning would have appeared with a nonangled crystal, limiting the scanning range to 1.3 GHz. (c) Recording of a 400-MHz chirp. (d) Recording of a fast scan.

Tables (1)

Tables Icon

Table 1 Summary of the Characteristics, Main Components, and Design Parameters of the Laser

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔLy=-a2nz3r33Uhy,
hy=-a2nz3r33UL0+y tan γC=h011+tan γL0y.
hyh01-tan γL0y.

Metrics