Abstract

Multiple scattering calculations of the electromagnetic force and the potential energy exerted by an evanescent field on a nanometric cylinder over a dielectric interface, as well as by a propagating Gaussian beam, are carried out. These calculations constitute a model that describes the gradient, scattering, and absorption components of the force in an elongated particle. The attractive or repulsive nature of the force is strongly dependent on the polarization of the incident field for a metallic particle, whereas a dielectric particle is only weakly attracted to high-intensity regions. Excitation of plasmon resonance in a metallic particle enhances both the scattering and the absorption components of the force, whereas it diminishes the gradient-force component.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. J. Hotta, K. Sasaki, H. Masuhara, and Y. Morishima, J. Phys. Chem. B 102, 7687 (1998).
  3. S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
    [CrossRef] [PubMed]
  4. S. Kawata and T. Sugiura, Opt. Lett. 17, 772 (1992).
    [CrossRef] [PubMed]
  5. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
    [CrossRef]
  6. A. Ashkin, Science 210, 1081 (1980).
    [CrossRef] [PubMed]
  7. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1998).
    [CrossRef]
  8. H. Furukawa and I. Yamaguchi, Opt. Lett. 23, 216 (1998).
    [CrossRef]
  9. K. Sasaki, J. Hotta, K. Wada, and H. Masuhara, Opt. Lett. 25, 1385 (2000).
    [CrossRef]
  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  11. J. R. Arias-González and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 18, 657 (2001).
    [CrossRef]
  12. J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, Phys. Rev. B 61, 115,402 (2002).
    [CrossRef]
  13. P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
    [CrossRef]
  14. P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 62, 11,185 (2000).
    [CrossRef]

2002 (1)

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, Phys. Rev. B 61, 115,402 (2002).
[CrossRef]

2001 (1)

2000 (3)

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 62, 11,185 (2000).
[CrossRef]

K. Sasaki, J. Hotta, K. Wada, and H. Masuhara, Opt. Lett. 25, 1385 (2000).
[CrossRef]

1998 (3)

K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1998).
[CrossRef]

H. Furukawa and I. Yamaguchi, Opt. Lett. 23, 216 (1998).
[CrossRef]

J. Hotta, K. Sasaki, H. Masuhara, and Y. Morishima, J. Phys. Chem. B 102, 7687 (1998).

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
[CrossRef]

1996 (1)

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

1992 (1)

1986 (1)

1980 (1)

A. Ashkin, Science 210, 1081 (1980).
[CrossRef] [PubMed]

Arias-González, J. R.

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, Phys. Rev. B 61, 115,402 (2002).
[CrossRef]

J. R. Arias-González and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 18, 657 (2001).
[CrossRef]

Ashkin, A.

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

Bustamante, C.

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 62, 11,185 (2000).
[CrossRef]

Chu, S.

Cui, Y.

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Dziedzic, J. M.

Furukawa, H.

Hotta, J.

K. Sasaki, J. Hotta, K. Wada, and H. Masuhara, Opt. Lett. 25, 1385 (2000).
[CrossRef]

J. Hotta, K. Sasaki, H. Masuhara, and Y. Morishima, J. Phys. Chem. B 102, 7687 (1998).

Kawata, S.

Lester, M.

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, Phys. Rev. B 61, 115,402 (2002).
[CrossRef]

Masuhara, H.

K. Sasaki, J. Hotta, K. Wada, and H. Masuhara, Opt. Lett. 25, 1385 (2000).
[CrossRef]

J. Hotta, K. Sasaki, H. Masuhara, and Y. Morishima, J. Phys. Chem. B 102, 7687 (1998).

Morishima, Y.

J. Hotta, K. Sasaki, H. Masuhara, and Y. Morishima, J. Phys. Chem. B 102, 7687 (1998).

Nieto-Vesperinas, M.

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, Phys. Rev. B 61, 115,402 (2002).
[CrossRef]

J. R. Arias-González and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 18, 657 (2001).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 62, 11,185 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
[CrossRef]

Sasaki, K.

K. Sasaki, J. Hotta, K. Wada, and H. Masuhara, Opt. Lett. 25, 1385 (2000).
[CrossRef]

J. Hotta, K. Sasaki, H. Masuhara, and Y. Morishima, J. Phys. Chem. B 102, 7687 (1998).

Smith, S. B.

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Sugiura, T.

Svoboda, K.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Wada, K.

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
[CrossRef]

Yamaguchi, I.

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

J. Hotta, K. Sasaki, H. Masuhara, and Y. Morishima, J. Phys. Chem. B 102, 7687 (1998).

Opt. Lett. (5)

Phys. Rev. B (3)

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, Phys. Rev. B 61, 115,402 (2002).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 62, 11,185 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
[CrossRef]

Science (2)

A. Ashkin, Science 210, 1081 (1980).
[CrossRef] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
[CrossRef] [PubMed]

Other (1)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left, top, vertical force on a gold cylinder with radius a=125 nm; left, bottom, extinction efficiency on the same cylinder. The incident wave is a plane wave. Thicker curves, cylinder in water; thinner curves, cylinder in vacuum. Darker curves, p polarization; lighter curves, s polarization. Right, scattering geometry.

Fig. 2
Fig. 2

Potential energy of a gold cylinder a=125 nm in water under the influence of a Gaussian beam, θ0=0°. (a) λ=1064 nm (s polarization), (b) λ=1064 nm (p polarization), (c) λ=532 nm (s polarization), (d) λ=532 nm (p polarization). Inset in (c), glass cylinder a=125 nm in water, λ=632.8 nm (s polarization). Inset in (d), glass cylinder a=125 nm in water, λ=632.8 nm (p polarization). Thicker curves, W=10,000 nm; thinner curves, W=6000 nm. Darker solid curves, d=175 nm; lighter solid curves, d=375 nm; dashed curves, no plane. Note that (c) and (d) address only the curve, without interaction with the plane for W=10,000 nm; and that for W=6000 nm the curves for d=175 nm and d=375 nm are coincident.

Fig. 3
Fig. 3

Force on a gold cylinder a=125 nm in water. Gaussian incidence W=10,000 nm. (a) Fz, θ0=0°; (b) normalized Fx [i.e., Fx/exp-2qz; see text for details], θ0=70° (TIR); (c) normalized Fz, θ0=62.5° (TIR); (d) normalized Fz, θ0=70° (TIR). Darker curves, p polarization; lighter curves, s polarization. Solid curves, interaction with the plane considered; dashed curves, no interaction with the plane. Thicker curves in (a) and dashed curves with crosses, λ=532 nm; other curves, λ=1064 nm.

Fig. 4
Fig. 4

Potential energy of a gold cylinder a=125 nm in water under the influence of an evanescent wave, created under TIR (Gaussian incidence, W=10,000 nm). (a) θ0=62.5° (s polarization), (b) θ0=62.5° (p polarization); (c) θ0=70° (s polarization), (d) θ0=70° (p polarization). Thicker curves, interaction with the plane considered; thinner curves with crosses, no interaction with the plane. Darker curves, λ=532 nm; lighter curves, λ=1064 nm. Insets, the same curves for a glass cylinder in water and λ=632.8 nm.

Metrics