Abstract

We present an investigation into the mechanism for guidance of microstructured optical fibers consisting of high-refractive-index cylinders embedded in a low-index background. A new guidance regime is identified in which the fibers’ confinement losses depend strongly on wavelength and the positions of the loss minima and maxima depend on the scattering properties of individual cylinders and only weakly on their position and number. We point out similarities between these results and those reported recently for two-dimensional antiresonant reflecting waveguides.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 25, 25 (1996).
  2. J. H. Eberly, Opt. Express 9, 674 (2001), www.opticsexpress.org .
    [CrossRef]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
    [CrossRef]
  4. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).
  5. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, Opt. Lett. 27, 1592 (2002).
    [CrossRef]
  6. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  7. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, J. Opt. Soc. Am. B 19, 2331 (2002).
    [CrossRef]
  8. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, Opt. Lett. 26, 488 (2001).
    [CrossRef]
  9. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 297–328.
  10. A. C. Lind and J. M. Greenberg, J. Appl. Phys. 37, 3195 (1966).
    [CrossRef]

2002 (3)

2001 (2)

1999 (1)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).

1996 (1)

1966 (1)

A. C. Lind and J. M. Greenberg, J. Appl. Phys. 37, 3195 (1966).
[CrossRef]

Abeeluck, A. K.

Atkin, D. M.

Birks, T. A.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
[CrossRef]

Botten, L. C.

de Sterke, C. M.

Eberly, J. H.

Eggleton, B. J.

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, Opt. Lett. 27, 1592 (2002).
[CrossRef]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
[CrossRef]

Fan, S.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).

Fink, Y.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).

Greenberg, J. M.

A. C. Lind and J. M. Greenberg, J. Appl. Phys. 37, 3195 (1966).
[CrossRef]

Headley, C.

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).

Joannopoulos, J. D.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
[CrossRef]

Knight, J. C.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
[CrossRef]

Kuhlmey, B. T.

Lind, A. C.

A. C. Lind and J. M. Greenberg, J. Appl. Phys. 37, 3195 (1966).
[CrossRef]

Litchinitser, N. M.

Maystre, D.

McPhedran, R. C.

Renversez, G.

Russell, P. St. J.

Steel, M. J.

Thomas, E. L.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 297–328.

White, T. P.

Windeler, R. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
[CrossRef]

J. Appl. Phys. (1)

A. C. Lind and J. M. Greenberg, J. Appl. Phys. 37, 3195 (1966).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (3)

Science (1)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 1537 (1999).

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 297–328.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, in Optical Fiber Communication Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 466–468.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Longitudinal Poynting vector, Sz=½RE×H*z, of the fundamental mode of a regular six-cylinder MOF at λ=0.792 µm. Cylinder diameter, 3.315 µm; refractive index, ncyl=1.8; cylinder spacing, 5.64 µm; background refractive index, ne=1.44.

Fig. 2
Fig. 2

(a) Real and (b) imaginary parts of the effective index of MOF modes for a number of different geometries. Curves (1), single hexagonal ring with Λ=5.64 µm; curves (2), three-ring hexagonal structure with Λ=5.64 µm; curves (3), 10-cylinder ring structure with Λ=5.03 µm; curves (4), 10-cylinder ring structure with Λ=7.09 µm; curves (5), random arrangement of 10 cylinders about the core region. Inset diagrams, the respective hole arrangements. The four dashed lines in (b) are contours of constant confinement loss in decibels per meter.

Fig. 3
Fig. 3

Comparison of MOF loss characteristics with the plane-wave scattering properties of a single cylinder. (a) Imaginary part of the effective index of the six-cylinder MOF shown in Fig. 2. (b) Scattering cross section of a single cylinder (arbitrary units). (c) Forward-to-backward scattering ratio, as defined in Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

expilx+ihz-iωt=expihz-iωt×n=- Jnlrexpinθ,
ρfb=forwardδoutrc,ϕSrrcyl,ϕdϕbackwardδoutrc,ϕSrrcyl,ϕdϕ,

Metrics