Abstract

By use of frequency-shifted feedback lasers, noise with a stationary amplitude and a periodically stationary phase is generated. The ensemble-averaged time correlation function is periodic, whereas the power spectrum is broadband, resulting in a waveform that does not obey the Wiener–Khintchine relations. An application to multiple-access communications is discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Balle, C. M. Littler, K. Bergmann, and F. V. Kowalski, Opt. Commun. 102, 166 (1993).
    [CrossRef]
  2. K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
    [CrossRef]
  3. F. V. Kowalski, P. D. Hale, and S. J. Shattil, Opt. Lett. 13, 622 (1988).
    [CrossRef]
  4. G. Bonnet, S. Balle, and K. Bergmann, Opt. Commun. 123, 790 (1996).
    [CrossRef]
  5. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991), Secs. 10.1 and 13.1.
  6. J. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 5.1.2.
  7. M. Yoshida, K. Nakamura, T. Miyahara, and H. Ito, in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 14–18.
  8. K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
    [CrossRef]

2000 (1)

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

1997 (1)

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

1996 (1)

G. Bonnet, S. Balle, and K. Bergmann, Opt. Commun. 123, 790 (1996).
[CrossRef]

1993 (1)

S. Balle, C. M. Littler, K. Bergmann, and F. V. Kowalski, Opt. Commun. 102, 166 (1993).
[CrossRef]

1988 (1)

Abe, F.

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

Balle, S.

G. Bonnet, S. Balle, and K. Bergmann, Opt. Commun. 123, 790 (1996).
[CrossRef]

S. Balle, C. M. Littler, K. Bergmann, and F. V. Kowalski, Opt. Commun. 102, 166 (1993).
[CrossRef]

Bergmann, K.

G. Bonnet, S. Balle, and K. Bergmann, Opt. Commun. 123, 790 (1996).
[CrossRef]

S. Balle, C. M. Littler, K. Bergmann, and F. V. Kowalski, Opt. Commun. 102, 166 (1993).
[CrossRef]

Bonnet, G.

G. Bonnet, S. Balle, and K. Bergmann, Opt. Commun. 123, 790 (1996).
[CrossRef]

Goodman, J.

J. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 5.1.2.

Hale, P. D.

Hara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

Ito, H.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

M. Yoshida, K. Nakamura, T. Miyahara, and H. Ito, in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 14–18.

Kasahara, K.

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

Kowalski, F. V.

S. Balle, C. M. Littler, K. Bergmann, and F. V. Kowalski, Opt. Commun. 102, 166 (1993).
[CrossRef]

F. V. Kowalski, P. D. Hale, and S. J. Shattil, Opt. Lett. 13, 622 (1988).
[CrossRef]

Littler, C. M.

S. Balle, C. M. Littler, K. Bergmann, and F. V. Kowalski, Opt. Commun. 102, 166 (1993).
[CrossRef]

Miyahara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

M. Yoshida, K. Nakamura, T. Miyahara, and H. Ito, in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 14–18.

Nakamura, K.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

M. Yoshida, K. Nakamura, T. Miyahara, and H. Ito, in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 14–18.

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991), Secs. 10.1 and 13.1.

Sato, M.

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

Shattil, S. J.

Yoshida, M.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

M. Yoshida, K. Nakamura, T. Miyahara, and H. Ito, in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 14–18.

IEEE J. Quantum Electron. (2)

K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito, IEEE J. Quantum Electron. 33, 103 (1997).
[CrossRef]

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, IEEE J. Quantum Electron. 36, 305 (2000).
[CrossRef]

Opt. Commun. (2)

S. Balle, C. M. Littler, K. Bergmann, and F. V. Kowalski, Opt. Commun. 102, 166 (1993).
[CrossRef]

G. Bonnet, S. Balle, and K. Bergmann, Opt. Commun. 123, 790 (1996).
[CrossRef]

Opt. Lett. (1)

Other (3)

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991), Secs. 10.1 and 13.1.

J. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 5.1.2.

M. Yoshida, K. Nakamura, T. Miyahara, and H. Ito, in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 14–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

rf signal from the interferometer output, with each contour corresponding to a change of 20 dB. The zero on the vertical scale is set to an interferometer path difference of 60.592 m, with the scale in millimeters. Data in the break (8-mm region) between the peaks are not shown.

Fig. 2
Fig. 2

rf spectra of the interferometer output when the interferometer is illuminated by one FSF laser with a small periodically stationary component. The resolution bandwidth is 1 kHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Enω= 12π-ξ0β×expiωβj=-j= expiΩβ+jT+ωTjdβ.

Metrics