Abstract

It is shown that efficient sum-frequency mixing is possible through transparency induced by autoionization. Tuning the incident laser frequencies to the absorption minimum of an autoionizing resonance for the generated wave greatly reduces the linear absorption of the generated wave while third-order susceptibility is still enhanced. The proposed scheme does not require any strong radiative couplings and would be particularly useful for the generation of short-wavelength radiation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Imamǒglu and S. E. Harris, Opt. Lett. 14, 1344 (1989).
    [CrossRef]
  2. S. E. Harris, J. E. Field, and A. Imamoǧlu, Phys. Rev. Lett. 64, 1107 (1990).
    [CrossRef] [PubMed]
  3. G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993).
    [CrossRef] [PubMed]
  4. Y. Li and M. Xiao, Opt. Lett. 21, 1064 (1996).
    [CrossRef] [PubMed]
  5. C. Dorman and J. P. Marangos, Phys. Rev. A 58, 4121 (1998).
    [CrossRef]
  6. T. Nakajima and P. Lambropoulos, Z. Phys. D 36, 17 (1996).
    [CrossRef]
  7. T. Nakajima, Phys. Rev. A 60, 4805 (1999).
    [CrossRef]
  8. T. Nakajima, Opt. Lett. 25, 847 (2000).
    [CrossRef]
  9. T. Nakajima, Phys. Rev. A 63, 043804 (2001).
    [CrossRef]
  10. A. Imamoǧlu and R. J. Ram, Opt. Lett. 19, 1744 (1994).
    [CrossRef]
  11. J. A. Armstrong and J. J. Wynne, Phys. Rev. Lett. 33, 1183 (1974).
    [CrossRef]
  12. G. Alber and P. Zoller, Phys. Rev. A 27, 1373 (1983).
    [CrossRef]
  13. K. H. Hahn, D. A. King, and S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
    [CrossRef] [PubMed]

2001 (1)

T. Nakajima, Phys. Rev. A 63, 043804 (2001).
[CrossRef]

2000 (1)

1999 (1)

T. Nakajima, Phys. Rev. A 60, 4805 (1999).
[CrossRef]

1998 (1)

C. Dorman and J. P. Marangos, Phys. Rev. A 58, 4121 (1998).
[CrossRef]

1996 (2)

T. Nakajima and P. Lambropoulos, Z. Phys. D 36, 17 (1996).
[CrossRef]

Y. Li and M. Xiao, Opt. Lett. 21, 1064 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993).
[CrossRef] [PubMed]

1990 (2)

S. E. Harris, J. E. Field, and A. Imamoǧlu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

K. H. Hahn, D. A. King, and S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[CrossRef] [PubMed]

1989 (1)

1983 (1)

G. Alber and P. Zoller, Phys. Rev. A 27, 1373 (1983).
[CrossRef]

1974 (1)

J. A. Armstrong and J. J. Wynne, Phys. Rev. Lett. 33, 1183 (1974).
[CrossRef]

Alber, G.

G. Alber and P. Zoller, Phys. Rev. A 27, 1373 (1983).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong and J. J. Wynne, Phys. Rev. Lett. 33, 1183 (1974).
[CrossRef]

Dorman, C.

C. Dorman and J. P. Marangos, Phys. Rev. A 58, 4121 (1998).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoǧlu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

Hahn, K. H.

K. H. Hahn, D. A. King, and S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[CrossRef] [PubMed]

Hakuta, K.

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoǧlu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

K. H. Hahn, D. A. King, and S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[CrossRef] [PubMed]

A. Imamǒglu and S. E. Harris, Opt. Lett. 14, 1344 (1989).
[CrossRef]

Imamoglu, A.

King, D. A.

K. H. Hahn, D. A. King, and S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[CrossRef] [PubMed]

Lambropoulos, P.

T. Nakajima and P. Lambropoulos, Z. Phys. D 36, 17 (1996).
[CrossRef]

Li, Y.

Marangos, J. P.

C. Dorman and J. P. Marangos, Phys. Rev. A 58, 4121 (1998).
[CrossRef]

Nakajima, T.

T. Nakajima, Phys. Rev. A 63, 043804 (2001).
[CrossRef]

T. Nakajima, Opt. Lett. 25, 847 (2000).
[CrossRef]

T. Nakajima, Phys. Rev. A 60, 4805 (1999).
[CrossRef]

T. Nakajima and P. Lambropoulos, Z. Phys. D 36, 17 (1996).
[CrossRef]

Ram, R. J.

Stoicheff, B. P.

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993).
[CrossRef] [PubMed]

Wynne, J. J.

J. A. Armstrong and J. J. Wynne, Phys. Rev. Lett. 33, 1183 (1974).
[CrossRef]

Xiao, M.

Zhang, G. Z.

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993).
[CrossRef] [PubMed]

Zoller, P.

G. Alber and P. Zoller, Phys. Rev. A 27, 1373 (1983).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (4)

C. Dorman and J. P. Marangos, Phys. Rev. A 58, 4121 (1998).
[CrossRef]

T. Nakajima, Phys. Rev. A 60, 4805 (1999).
[CrossRef]

T. Nakajima, Phys. Rev. A 63, 043804 (2001).
[CrossRef]

G. Alber and P. Zoller, Phys. Rev. A 27, 1373 (1983).
[CrossRef]

Phys. Rev. Lett. (4)

K. H. Hahn, D. A. King, and S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[CrossRef] [PubMed]

J. A. Armstrong and J. J. Wynne, Phys. Rev. Lett. 33, 1183 (1974).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoǧlu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993).
[CrossRef] [PubMed]

Z. Phys. D (1)

T. Nakajima and P. Lambropoulos, Z. Phys. D 36, 17 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Level scheme considered in this Letter.

Fig. 2
Fig. 2

Variations of (a) real and imaginary parts of χ1, (b) χ32, and (c) χ3/Im χ12 at Ω20 as a function of δ2/Γ3 while δ1=0 is constant. The employed parameters are q1=5,q2=5,q3=1,μ12=μ23=μ13=0.1, η=0.1,γ1=1.6×10-5Γ2,γ2=0,γ3=0,Γ2=Γ3, and γ21coll=γ31coll=10-2Γ3

Fig. 3
Fig. 3

χ3/Im χ12 as a function of normalized Rabi frequency Ω2/Γ3 with δ1 and δ2 adjusted for maximum enhancement at different values of Ω2/Γ3. Except Ω2, all parameters are the same as those for Fig. 2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ·11=-γ1σ11+2 ImΩ˜1σ21+2 ImΩ˜3σ31,
σ·22=-γ2+Γ2σ22-2 ImΩ˜1*σ21+2 ImΩ˜2σ32,
σ·33=-γ3+Γ3σ33-2 ImΩ˜2*σ32-2 ImΩ˜3*σ31,
σ·21= iδ1-1/2γ1+γ2+Γ2σ21-iΩ˜1σ11-Ω˜1*σ22-iΩ˜2σ31,
σ·31= iδ1+δ2-1/2γ1+γ3+Γ3σ31-iΩ˜2σ21+iΩ˜1*σ32-iΩ˜3σ11-Ω˜3*σ33,
σ·32= iδ2-1/2γ2+γ3+Γ2+Γ3σ32-iΩ˜2σ22-Ω˜2*σ33+iΩ˜1*σ31-Ω˜3σ12,
χ1=-s1-iγ12-μ˜132δ1+iγ1+γ2+Γ2/2δ1+iγ1+γ2+Γ2/2δ1+δ2+iγ1+γ3+Γ3/2-Ω˜22,
χ3=μ˜12μ˜23μ˜13+η˜δ1+δ2+iγ1+γ3+Γ3/2δ1+iγ1+γ2+Γ2/2δ1+δ2+iγ1+γ3+Γ3/2-Ω˜22,
χ3 Im χ12= q32Γ32μ1322μ̃12μ̃23μ̃132δ12+Γ2/22×δ1+δ22+Γ3/22δ1+δ2+q3Γ3/24×1+η̃μ̃23μ̃13δ1+δ2+i2Γ32,

Metrics