Abstract

We demonstrate a synchronously pumped optical parametric oscillator that emits picosecond pulses at an 1.55µm wavelength with a repetition rate as a high as 10 GHz and as much as 100 mW of average power. It is pumped with a diode-pumped passively mode-locked 10-GHz Nd:YVO4 laser. Because of its high repetition rate and its potential for ultrabroad tunability, this kind of system is useful for telecom applications. It should be scalable to 40 GHz and higher as required for future telecom networks.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Krainer, R. Paschotta, M. Moser, and U. Keller, Electron. Lett. 36, 1846 (2000).
    [CrossRef]
  2. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).
  3. L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
    [CrossRef]
  4. A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 657 (2000).
    [CrossRef]
  5. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
    [CrossRef]
  6. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
    [CrossRef]
  7. B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
    [CrossRef]
  8. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, Opt. Lett. 17, 505 (1992).
    [CrossRef] [PubMed]
  9. R. L. Sutherland, in Handbook of Nonlinear Optics, B. J. Thompson, ed. (Marcel Dekker, New York, 1996), pp. 119–123.
  10. M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
    [CrossRef]
  11. P. Lichtenberg-Hansen and P. Buchhave, Opt. Lett. 22, 1074 (1997).
    [CrossRef]

2002 (1)

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

2001 (1)

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
[CrossRef]

2000 (2)

A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 657 (2000).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, Electron. Lett. 36, 1846 (2000).
[CrossRef]

1999 (1)

1998 (1)

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

1997 (1)

1995 (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

1992 (1)

Asom, M. T.

Boller, K.-J.

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
[CrossRef]

A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 657 (2000).
[CrossRef]

Boyd, G. D.

Brovelli, L. R.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Buchhave, P.

Calasso, I.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Chiu, T. H.

Ferguson, J. F.

Hönninger, C.

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Keller, U.

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, Electron. Lett. 36, 1846 (2000).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, Opt. Lett. 17, 505 (1992).
[CrossRef] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).

Klein, M. E.

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
[CrossRef]

A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 657 (2000).
[CrossRef]

Klimov, I.

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

Kopf, D.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Krainer, L.

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, Electron. Lett. 36, 1846 (2000).
[CrossRef]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).

Lecomte, S.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).

Lichtenberg-Hansen, P.

Miller, D. A. B.

Morier-Genoud, F.

Moser, M.

L. Krainer, R. Paschotta, M. Moser, and U. Keller, Electron. Lett. 36, 1846 (2000).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
[CrossRef]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Paschotta, R.

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, Electron. Lett. 36, 1846 (2000).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
[CrossRef]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).

Robertson, A.

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
[CrossRef]

A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 657 (2000).
[CrossRef]

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Spühler, G. J.

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, in Handbook of Nonlinear Optics, B. J. Thompson, ed. (Marcel Dekker, New York, 1996), pp. 119–123.

Teisset, C. Y.

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

Tremont, M. A.

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
[CrossRef]

A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 657 (2000).
[CrossRef]

Wallenstein, R.

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
[CrossRef]

A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 657 (2000).
[CrossRef]

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Weingarten, K. J.

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).

Appl. Phys. B (2)

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, Appl. Phys. B 73, 1 (2001).
[CrossRef]

Electron. Lett. (2)

L. Krainer, R. Paschotta, M. Moser, and U. Keller, Electron. Lett. 36, 1846 (2000).
[CrossRef]

L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, Electron. Lett. 38, 225 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Opt. Lett. (3)

Other (2)

R. L. Sutherland, in Handbook of Nonlinear Optics, B. J. Thompson, ed. (Marcel Dekker, New York, 1996), pp. 119–123.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: a monolithic periodically poled lithium niobate (PPLN) OPO, pumped with the diode-pumped 10-GHz Nd:YVO4 laser.

Fig. 2
Fig. 2

(a) Autocorrelation for the signal output with 100- and 82-mW average power. The pulse widths are 12.7 and 11.8 ps, respectively. SH, second-harmonic. (b) Optical spectrum for 100-mW output power (solid curve). The spectral width is 0.23 nm (dotted sech2 fit).

Fig. 3
Fig. 3

Schematic of the evolution of the signal power at a pump power of 580 mW when the pump repetition rate is varied (starting from high values). This behavior can be explained by an interplay of residual idler feedback, thermal effects, and a shift of the longitudinal modes of the pump laser (see text).

Metrics