Abstract

We have developed a novel imaging instrument, the volume holographic telescope, which is capable of returning high-resolution depth information about remote objects. We present a theoretical analysis of the instrument’s performance and an experimental demonstration with a microfabricated object.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
    [CrossRef]
  2. W. Liu, G. Barbastathis, and D. Psaltis, Opt. Lett. 27, 854 (2002).
    [CrossRef]
  3. G. Barbastathis and A. Sinha, Trends Biotechnol. 19, 383 (2001).
    [CrossRef] [PubMed]
  4. G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
    [CrossRef]
  5. D. Marr, Vision: A Computational Investigation into Human Representation and Processing of Visual Information (Freeman, San Francisco, Calif., 1982).
  6. G. Barbastathis and D. Psaltis, in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2001), pp. 21–62.
    [CrossRef]

2002

2001

G. Barbastathis and A. Sinha, Trends Biotechnol. 19, 383 (2001).
[CrossRef] [PubMed]

1999

G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
[CrossRef]

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Balberg, M.

Barbastathis, G.

W. Liu, G. Barbastathis, and D. Psaltis, Opt. Lett. 27, 854 (2002).
[CrossRef]

G. Barbastathis and A. Sinha, Trends Biotechnol. 19, 383 (2001).
[CrossRef] [PubMed]

G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
[CrossRef]

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

G. Barbastathis and D. Psaltis, in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2001), pp. 21–62.
[CrossRef]

Brady, D. J.

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

G. Barbastathis, M. Balberg, and D. J. Brady, Opt. Lett. 24, 811 (1999).
[CrossRef]

Liu, W.

Marr, D.

D. Marr, Vision: A Computational Investigation into Human Representation and Processing of Visual Information (Freeman, San Francisco, Calif., 1982).

Psaltis, D.

W. Liu, G. Barbastathis, and D. Psaltis, Opt. Lett. 27, 854 (2002).
[CrossRef]

G. Barbastathis and D. Psaltis, in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2001), pp. 21–62.
[CrossRef]

Sinha, A.

G. Barbastathis and A. Sinha, Trends Biotechnol. 19, 383 (2001).
[CrossRef] [PubMed]

Opt. Lett.

Proc. IEEE

G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Trends Biotechnol.

G. Barbastathis and A. Sinha, Trends Biotechnol. 19, 383 (2001).
[CrossRef] [PubMed]

Other

D. Marr, Vision: A Computational Investigation into Human Representation and Processing of Visual Information (Freeman, San Francisco, Calif., 1982).

G. Barbastathis and D. Psaltis, in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2001), pp. 21–62.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the VH telescope: (a) recording setup, (b) imaging setup.

Fig. 2
Fig. 2

Longitudinal resolution of the VH telescope: solid curve, theoretical; filled circles, experimental.

Fig. 3
Fig. 3

VH telescopic PSFs obtained for VH telescopes with several magnifications for a point source object located 29 cm in front of the telescope. In these and subsequent experiments the holographic material was a 2-mm-thick slab of 0.03% Fe-doped LiNbO3 recorded with a spherical wave reference and a plane-wave signal beam, θ=30°. The diffraction efficiency, η, was 10%. The diameter of the front lens was 2.54 cm. The FWHMs of these PSFs were ΔzFWHM150 µm and ΔxFWHM15 µm.

Fig. 4
Fig. 4

Image of a silicon microturbine obtained with a VH telescope. The telescope had Mα=1.5, and the NA of the system was 3.581°. The microturbine was located 16 cm away from the entrance pupil of the telescope. (a) Image of the microturbine captured with a standard digital camera. (b) Longitudinal PSF of the VH imaging systems for a Bragg-matched point source 16 cm away from the entrance pupil of the telescope: experimental, ΔzFWHM100 µm; theoreticcal, ΔzFWHM=105 µm. (c)–(f) VH telescope scans at different depths through the object. At any given depth, the Bragg-matched portions of the object are brightest.

Fig. 5
Fig. 5

Binocular imaging system for comparison with a VH telescope of equivalent NA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔxFWHM0.5λθ×NA,    ΔzFWHM1.7λNA2.
BWhol=BWtel×Mα,
ΔzFWHM=ΔxFWHM×Mαtanθ/2,
ΔxFWHM=0.61λ/NAc,

Metrics