Abstract

Frequency-resolved optical gating is used to characterize ultrashort optical pulses that are compressed nonadiabatically in dispersion-decreasing fiber. The pulses undergo an interesting temporal pulse breakup following dispersion in both the normal and anomalous regimes, and compression ratios close to the adiabatic limit are obtained. All behaviors are in excellent agreement with numerical integration of the nonlinear Schrödinger equation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  2. K. T. Chan and W. H. Cao, Opt. Commun. 184, 463 (2000).
    [CrossRef]
  3. A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
    [CrossRef]
  4. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, Opt. Lett. 18, 476 (1993).
    [CrossRef] [PubMed]
  5. M. D. Pelusi and H. F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
    [CrossRef]
  6. S. R. Clarke, J. Clutterbuck, R. H. J. Grimshaw, and B. A. Malomed, Phys. Lett. A 262, 434 (1999).
    [CrossRef]
  7. R. Trebino and D. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  8. T. F. Carruthers and I. N. Duling, Opt. Lett. 21, 1927 (1996).
    [CrossRef] [PubMed]

2000 (1)

K. T. Chan and W. H. Cao, Opt. Commun. 184, 463 (2000).
[CrossRef]

1999 (1)

S. R. Clarke, J. Clutterbuck, R. H. J. Grimshaw, and B. A. Malomed, Phys. Lett. A 262, 434 (1999).
[CrossRef]

1997 (2)

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

M. D. Pelusi and H. F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

1996 (1)

1993 (2)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cao, W. H.

K. T. Chan and W. H. Cao, Opt. Commun. 184, 463 (2000).
[CrossRef]

Carruthers, T. F.

Chan, K. T.

K. T. Chan and W. H. Cao, Opt. Commun. 184, 463 (2000).
[CrossRef]

Chernikov, S. V.

Chu, P. L.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

Clarke, S. R.

S. R. Clarke, J. Clutterbuck, R. H. J. Grimshaw, and B. A. Malomed, Phys. Lett. A 262, 434 (1999).
[CrossRef]

Clutterbuck, J.

S. R. Clarke, J. Clutterbuck, R. H. J. Grimshaw, and B. A. Malomed, Phys. Lett. A 262, 434 (1999).
[CrossRef]

Dianov, E. M.

Duling, I. N.

Grimshaw, R. H. J.

S. R. Clarke, J. Clutterbuck, R. H. J. Grimshaw, and B. A. Malomed, Phys. Lett. A 262, 434 (1999).
[CrossRef]

Hatami-Hanza, H.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

Kane, D.

Liu, H. F.

M. D. Pelusi and H. F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

Malomed, B. A.

S. R. Clarke, J. Clutterbuck, R. H. J. Grimshaw, and B. A. Malomed, Phys. Lett. A 262, 434 (1999).
[CrossRef]

Mostofi, A.

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

Payne, D. N.

Pelusi, M. D.

M. D. Pelusi and H. F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

Richardson, D. J.

Trebino, R.

IEEE J. Quantum Electron. (2)

A. Mostofi, H. Hatami-Hanza, and P. L. Chu, IEEE J. Quantum Electron. 33, 620 (1997).
[CrossRef]

M. D. Pelusi and H. F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

K. T. Chan and W. H. Cao, Opt. Commun. 184, 463 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. A (1)

S. R. Clarke, J. Clutterbuck, R. H. J. Grimshaw, and B. A. Malomed, Phys. Lett. A 262, 434 (1999).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Output intensity and phase from the sigma laser and from DDF (linear intensity scale). Sech2T/T0 fit (squares) yields T0=1.1 ps. The compressed pulse is also shown after propagation through (b) 3.0 m of high-dispersion fiber β2=85 ps2/km and (c) 12 m of SMF-28 fiber β2=-18 ps2/km. The simulations in (b) and (c) are discussed in the text.

Fig. 2
Fig. 2

Spectral (left-hand column) and temporal (right-hand column) intensity and phase (dotted curves) of the sigma laser pulse (top row) and of the compressed pulse for increasing pulse energies. Extracted values of T0 from fits to sech2T/T0 are indicated. (h) Intensity profile of the compressed pulse after propagation through 12 m of SMF-28. Results of numerical simulations (circles) are shown for the spectra in (c), (e), and (g).

Fig. 3
Fig. 3

Numerical simulations: (a) Intensity of (solid curve) an N=1.69 pulse compressed in 100 m of DDF and (dashed curve) an ideal sech2 pulse. (b) Phase (dotted curve) and frequency shift across the compressed pulse, Δω=-dϕt/dt. (c)–(f) Intensity of the compressed pulse after propagation through 5Ld and 10Ld in the (c), (e) anomalous and (d), (f) normal regimes. The dashed curve shows the evolution of the ideal sech2 pulse. (g) Spectrum of the compressed pulse (solid curve) and the sech2 pulse (circles).

Fig. 4
Fig. 4

Simulation of compressed pulse propagation through 13Ld with compression in different lengths of DDF. Ldddf is 100 m. Pedestal amounts are (a) 0.01%, (c) 1.7%, and (e) 37%. The right-hand column shows the corresponding spectra (linear scale). The dashed curves in (c) and (e) are the initial intensity profiles of the compressed pulses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Az+α2A+i2β2z2AT2-16β33AT3=iγA2A.

Metrics