Abstract

We present a new technique for the direct measurement of the two-point field correlation function of a monochromatic light source based on carrier-encoded lateral shearing interferometry. The technique provides a higher dynamic range and a significant reduction of the amount of data compared with previously demonstrated methods. We demonstrate the measurement of coherent and partially coherent sources.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Cheng and M. G. Raymer, Phys. Rev. Lett. 82, 4807 (1999).
    [CrossRef]
  2. A. Wax, S. Bali, G. A. Alphonse, and J. E. Thomas, J. Biomed. 4, 482 (1999).
  3. C. Iaconis and I. A. Walmsley, Opt. Lett. 21, 1783 (1996).
    [CrossRef] [PubMed]
  4. C. C. Cheng, M. G. Raymer, and H. Heier, J. Mod. Opt. 47, 1237 (2000).
    [CrossRef]
  5. A. Wax, S. Bali, and J. E. Thomas, Opt. Lett. 24, 1188 (1999).
    [CrossRef]
  6. K. F. Lee, F. Reil, S. Bali, A. Wax, and J. E. Thomas, Opt. Lett. 24, 1370 (1999).
    [CrossRef]
  7. C. C. Cheng and M. G. Raymer, Phys. Rev. A 62, 3811 (2000).
  8. A. Wax, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 85, 66 (2000).
    [CrossRef] [PubMed]
  9. M. Françon and S. Mallick, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1967), pp. 73–104.
  10. M. Kujawinska, in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Philadelphia, 1993), pp. 141–193.

2000 (3)

C. C. Cheng, M. G. Raymer, and H. Heier, J. Mod. Opt. 47, 1237 (2000).
[CrossRef]

C. C. Cheng and M. G. Raymer, Phys. Rev. A 62, 3811 (2000).

A. Wax, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 85, 66 (2000).
[CrossRef] [PubMed]

1999 (4)

A. Wax, S. Bali, and J. E. Thomas, Opt. Lett. 24, 1188 (1999).
[CrossRef]

K. F. Lee, F. Reil, S. Bali, A. Wax, and J. E. Thomas, Opt. Lett. 24, 1370 (1999).
[CrossRef]

C. C. Cheng and M. G. Raymer, Phys. Rev. Lett. 82, 4807 (1999).
[CrossRef]

A. Wax, S. Bali, G. A. Alphonse, and J. E. Thomas, J. Biomed. 4, 482 (1999).

1996 (1)

Alphonse, G. A.

A. Wax, S. Bali, G. A. Alphonse, and J. E. Thomas, J. Biomed. 4, 482 (1999).

Bali, S.

A. Wax, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 85, 66 (2000).
[CrossRef] [PubMed]

A. Wax, S. Bali, G. A. Alphonse, and J. E. Thomas, J. Biomed. 4, 482 (1999).

A. Wax, S. Bali, and J. E. Thomas, Opt. Lett. 24, 1188 (1999).
[CrossRef]

K. F. Lee, F. Reil, S. Bali, A. Wax, and J. E. Thomas, Opt. Lett. 24, 1370 (1999).
[CrossRef]

Cheng, C. C.

C. C. Cheng, M. G. Raymer, and H. Heier, J. Mod. Opt. 47, 1237 (2000).
[CrossRef]

C. C. Cheng and M. G. Raymer, Phys. Rev. A 62, 3811 (2000).

C. C. Cheng and M. G. Raymer, Phys. Rev. Lett. 82, 4807 (1999).
[CrossRef]

Françon, M.

M. Françon and S. Mallick, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1967), pp. 73–104.

Heier, H.

C. C. Cheng, M. G. Raymer, and H. Heier, J. Mod. Opt. 47, 1237 (2000).
[CrossRef]

Iaconis, C.

Kujawinska, M.

M. Kujawinska, in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Philadelphia, 1993), pp. 141–193.

Lee, K. F.

Mallick, S.

M. Françon and S. Mallick, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1967), pp. 73–104.

Raymer, M. G.

C. C. Cheng and M. G. Raymer, Phys. Rev. A 62, 3811 (2000).

C. C. Cheng, M. G. Raymer, and H. Heier, J. Mod. Opt. 47, 1237 (2000).
[CrossRef]

C. C. Cheng and M. G. Raymer, Phys. Rev. Lett. 82, 4807 (1999).
[CrossRef]

Reil, F.

Thomas, J. E.

A. Wax, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 85, 66 (2000).
[CrossRef] [PubMed]

A. Wax, S. Bali, G. A. Alphonse, and J. E. Thomas, J. Biomed. 4, 482 (1999).

A. Wax, S. Bali, and J. E. Thomas, Opt. Lett. 24, 1188 (1999).
[CrossRef]

K. F. Lee, F. Reil, S. Bali, A. Wax, and J. E. Thomas, Opt. Lett. 24, 1370 (1999).
[CrossRef]

Walmsley, I. A.

Wax, A.

A. Wax, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 85, 66 (2000).
[CrossRef] [PubMed]

A. Wax, S. Bali, and J. E. Thomas, Opt. Lett. 24, 1188 (1999).
[CrossRef]

A. Wax, S. Bali, G. A. Alphonse, and J. E. Thomas, J. Biomed. 4, 482 (1999).

K. F. Lee, F. Reil, S. Bali, A. Wax, and J. E. Thomas, Opt. Lett. 24, 1370 (1999).
[CrossRef]

J. Biomed. (1)

A. Wax, S. Bali, G. A. Alphonse, and J. E. Thomas, J. Biomed. 4, 482 (1999).

J. Mod. Opt. (1)

C. C. Cheng, M. G. Raymer, and H. Heier, J. Mod. Opt. 47, 1237 (2000).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

C. C. Cheng and M. G. Raymer, Phys. Rev. A 62, 3811 (2000).

Phys. Rev. Lett. (2)

A. Wax, S. Bali, and J. E. Thomas, Phys. Rev. Lett. 85, 66 (2000).
[CrossRef] [PubMed]

C. C. Cheng and M. G. Raymer, Phys. Rev. Lett. 82, 4807 (1999).
[CrossRef]

Other (2)

M. Françon and S. Mallick, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1967), pp. 73–104.

M. Kujawinska, in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Philadelphia, 1993), pp. 141–193.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Symmetric (left) and asymmetric (right) interferometer for the measurement of the correlation function.

Fig. 2
Fig. 2

Amplitude of the correlation function for two mutually coherent beams. The cross-correlation terms near ×1=15, ×2=40 and ×1=40, ×2=15 disappear for mutually incoherent beams.

Fig. 3
Fig. 3

Contour plot of the amplitude of the correlation function of a beam with a low-energy sidelobe on a logarithmic scale. The energy in the sidelobe at ×1=15, ×2=15 is 1% of the energy of the main beam (located at ×1=40, ×2=40). The amplitude of the cross-correlation terms (located near ×1=40, ×2=15 and ×1=15, ×2=40) is 10% of the amplitude of the correlation function of the main beam. The interval between contour lines if 0.25. The amplitude has been normalized to 1, and all values smaller than -2.5 have been set to -2.5 for clarity.

Fig. 4
Fig. 4

Contour plots of the amplitude of the two-point correlation function after propagation through a scattering lipid solution. Concentrations of the lipid solution were (a) 0%, (b) 0.64%, (c) 0.73%, and (d) 1%. The correlation function is normalized to 1, and the interval between contour lines is 0.1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Sx=Ex+ExexpiKx2=Ex2+Ex2+ExE*x×exp-iKx+cc.

Metrics