Abstract

We present the design and fabrication of a planar structure for coupling light from a multimode feed waveguide into a single-line-defect photonic-crystal waveguide. Finite-difference time-domain calculations predict a coupling efficiency of greater than 90%, and preliminary experimental results indicate successful coupling through a single-line-defect photonic-crystal waveguide. Device design, fabrication, and characterization are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. D. W. Prather, A. Sharkawy, and S. Shi, “Theory and applications of photonic crystals,” in Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton, Fla., to be published).
  4. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
    [CrossRef]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
    [CrossRef]
  6. A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Norwood, Mass., 1995).
  7. R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
    [CrossRef]
  8. Clearly, if we excite in the feed waveguide a mode other than the plane wave for which the J-coupler has been designed, the coupling efficiency will be compromised.
  9. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]

2000

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

1994

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Doll, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Hunsperger, R.

R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
[CrossRef]

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Kosaka, H.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
[CrossRef]

Loncar, M.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Pearsall, T. P.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Prather, D. W.

D. W. Prather, A. Sharkawy, and S. Shi, “Theory and applications of photonic crystals,” in Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton, Fla., to be published).

Scherer, A.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Sharkawy, A.

D. W. Prather, A. Sharkawy, and S. Shi, “Theory and applications of photonic crystals,” in Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton, Fla., to be published).

Shi, S.

D. W. Prather, A. Sharkawy, and S. Shi, “Theory and applications of photonic crystals,” in Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton, Fla., to be published).

Taflove, A.

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Norwood, Mass., 1995).

Tokushima, M.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
[CrossRef]

Tomita, A.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
[CrossRef]

Vuckovic, J.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yamada, H.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
[CrossRef]

Appl. Phys. Lett.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Other

D. W. Prather, A. Sharkawy, and S. Shi, “Theory and applications of photonic crystals,” in Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton, Fla., to be published).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Norwood, Mass., 1995).

R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
[CrossRef]

Clearly, if we excite in the feed waveguide a mode other than the plane wave for which the J-coupler has been designed, the coupling efficiency will be compromised.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation of J-coupler performance with the finite-difference time-domain method.

Fig. 2
Fig. 2

Illustration of the geometry of the J-coupler used for analysis and design.

Fig. 3
Fig. 3

Scanning-electron microscope picture of the fabricated J-coupler.

Fig. 4
Fig. 4

Images of the experimental results of the J-coupler with a near-IR camera.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y0-y+x2+y2=constant,
y=x22a-a2,
A1A21-x/a21+x/a2wxdx,
A1-A2=2aarctanA1/a-arctanA2/a.

Metrics