Abstract

Using numerical simulations of vector radiative transport, we examine time-resolved backscattering of circularly polarized plane waves normally incident upon a slab containing a random distribution of latex spheres in water. For large spheres the effect of polarization memory occurs a short time after first-order scattering and before depolarization. It is the result of successive near-forward-scattering events that maintain the incident wave’s helicity. For moderately large scatterers it exhibits a simple dependence on the anisotropy factor. For larger spheres or those with higher refractive indices, it also depends on complicated angular and polarization characteristics of backscattering given by Mie theory.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
    [CrossRef]
  2. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).
  3. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
    [CrossRef]
  4. A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
    [CrossRef]
  5. A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
    [CrossRef]
  6. A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, Appl. Opt. 40, 5495 (2001).
    [CrossRef]
  7. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
    [CrossRef]
  8. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

2002 (1)

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

2001 (2)

1999 (2)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

1998 (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Gorodnichev, E. E.

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

Ishimaru, A.

Jaruwatanadilok, S.

Kim, A. D.

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Kuga, Y.

Kuzovlev, A. I.

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Moscoso, M.

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Rogozkin, D. B.

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Appl. Opt. (1)

JETP (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP 88, 421 (1999).
[CrossRef]

JETP Lett. (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, JETP Lett. 68, 22 (1998).
[CrossRef]

Laser Phys. (1)

E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, Laser Phys. 9, 1210 (1999).

Phys. Rev. B (2)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. B 49, 1767 (1994).

Phys. Rev. E (1)

A. D. Kim and M. Moscoso, Phys. Rev. E 64, 026612 (2001).
[CrossRef]

SIAM J. Comput. Sci. (1)

A. D. Kim and M. Moscoso, SIAM J. Comput. Sci. 23, 2075 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Backscattered flux as a function of time for spheres with ka= (a) 1.0, (b) 2.5, (c) 4.0. Time is normalized by c/L, where c is the constant wave speed and L is the length of the slab. The incident wave is a left-handed circularly polarized pulse of width 0.01L/c. The insets in (b) and (c) show details on a shorter time scale near t=0.

Fig. 2
Fig. 2

Peak time tpeak of the left-handed circularly polarized component as a function of anisotropy factor g and its least-squares fit to a quadradic in g ctpeak/lo380.23g2-559.23g+212.23. These times are normalized by lo/c, where lo is the scattering mean free path.

Fig. 3
Fig. 3

Stokes parameter V computed by Mie theory for m=1.19 and m=1.40 plotted as a function of the cosine of scattering angle Θ for backscattering. Three sphere sizes are plotted: ka=3.0, 4.0, 5.0.

Fig. 4
Fig. 4

Same as Fig. 1 for (a) m=1.19 and ka=9.24 and (b) m=1.40 and ka=5.28.

Metrics