Abstract

A method for lowering the sideband levels associated with the spectral response of resonant waveguide-grating filters is presented. With a TM-polarized incident wave near the Brewster angle, the filter sidebands are suppressed by application of a half-wavelength absentee waveguide layer and an arbitrary-thickness grating layer. Adjusting the thickness of the grating layer permits control of the filter linewidth without appreciably affecting the sideband features. To verify the theoretical prediction, we fabricated and tested a double-layer waveguide-grating filter. It exhibited a peak efficiency of 82.4%, with sideband reflection levels below 0.6%, over a 95-nm spectral range.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
    [CrossRef]
  2. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
    [CrossRef]
  3. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef] [PubMed]
  4. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  5. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, Opt. Lett. 23, 1556 (1998).
    [CrossRef]
  6. S. S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).
    [CrossRef] [PubMed]
  7. S. S. Wang and R. Magnusson, Appl. Opt. 34, 2414 (1995).
    [CrossRef] [PubMed]
  8. R. Magnusson, D. Shin, and Z. S. Liu, Opt. Lett. 23, 612 (1998).
    [CrossRef]
  9. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  10. P. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779 (1996).
    [CrossRef]

1998

1997

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE Quantum Electron. 33, 2038 (1997).
[CrossRef]

1996

1995

1994

1993

1989

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

1965

A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE Quantum Electron. 33, 2038 (1997).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Hessel, A.

A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
[CrossRef]

Lalanne, P.

Liu, Z. S.

Magnusson, R.

Moharam, M. G.

Morris, G. M.

Oliner, A. A.

A. Hessel and A. A. Oliner, Appl. Opt. 10, 1275 (1965).
[CrossRef]

Pommet, D. A.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE Quantum Electron. 33, 2038 (1997).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE Quantum Electron. 33, 2038 (1997).
[CrossRef]

Shin, D.

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Tibuleac, S.

Wang, S. S.

Young, P. P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Angular response of a double-layer Brewster GMR filter for an incident TM-polarized wave at 850-nm wavelength (solid curve). The parameters are nc=1.0, ns=1.453, n1H=1.78, n1L=1.0, n2=1.78, f=0.57, d1=50 nm, d2=269.3 nm, and Λ=361.5 nm. The dashed curve corresponds to the angular response of an equivalent thin-film structure with the grating layer replaced by a homogeneous layer that has a refractive index of 1.453.

Fig. 2
Fig. 2

Spectral response (solid curve) of the filter in Fig. 1 for a TM-polarized wave incident at the Brewster angle (55.46°). Parameters are the same as in Fig. 1. The dashed curves illustrate the effect of waveguide-thickness error. The dotted curve show the response of the equivalent homogeneous thin-film structure.

Fig. 3
Fig. 3

Spectral responses of double-layer Brewster filters with several grating thicknesses. The TM-polarized wave is incident at the Brewster angle (55.46°). Parameters are the same as in Fig. 1, except that (solid curve) d1=70 nm, f=0.67, and Λ=359.7 nm and (dotted curve) d1=30 nm, f=0.4, and Λ=363.2 nm.

Fig. 4
Fig. 4

Spectral response of a double-layer Brewster GMR filter with a TM-polarized wave incident at the Brewster angle (55.46°). The parameters are nc=1.0, ns=1.453, n1H=1.6, n1L=1.0, n2=1.6, f=0.81, d1=50 nm, d2=309.8 nm, and Λ=371.4 nm.

Fig. 5
Fig. 5

Experimentally measured spectral response of a double-layer filter with a TM-polarized Ti:sapphire laser beam (1mm diameter) incident at 50.2°. The parameters for the theoretical calculation are nc=1.0, ns=1.45, n1H=1.63, n1L=1.0, n2=1.97, d1=175 nm, d2=260 nm, and Λ=453.2 nm. The grating shape is assumed in the calculation to be sinusoidal.

Metrics