Abstract

Numerical simulations have been used in studies of the temporal and spectral features of supercontinuum generation in photonic crystal and tapered optical fibers. In particular, an ensemble average over multiple simulations performed with random quantum noise on the input pulse allows the coherence of the supercontinuum to be quantified in terms of the dependence of the degree of first-order coherence on the wavelength. The coherence is shown to depend strongly on the input pulse’s duration and wavelength, and optimal conditions for the generation of coherent supercontinua are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  3. A. L. Gaeta, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 48, paper CMK3.
  4. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 26, 1356 (2001).
    [CrossRef]
  5. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef]
  6. R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 26, 1376 (2001).
    [CrossRef]
  7. M. Bellini and T. W. Hänsch, Opt. Lett. 25, 1049 (2000).
    [CrossRef]
  8. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  9. G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  10. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, J. Opt. Soc. Am. B 6, 1149 (1989).
    [CrossRef]
  11. G. A. Nowak, J. Kim, and M. N. Islam, Appl. Opt. 38, 7364 (1999).
    [CrossRef]
  12. H. Kubota, K. R. Tamura, and M. Nakazawa, J. Opt. Soc. Am. B 16, 2223 (1999).
    [CrossRef]
  13. T. M. Fortier, J. Ye, S. T. Cundiff, and R. Windeler, Opt. Lett. 27, 445 (2002).
    [CrossRef]

2002 (1)

2001 (3)

2000 (3)

1999 (2)

1989 (2)

Agrawal, G. P.

G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Bar-Joseph, I.

Bellini, M.

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Chau, A. H. L.

Chemla, D. S.

Coen, S.

Cundiff, S. T.

Fortier, T. M.

Gäbel, K.

Gaeta, A. L.

A. L. Gaeta, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 48, paper CMK3.

Gordon, J. P.

Hänsch, T. W.

Harvey, J. D.

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Holzwarth, R.

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Islam, M. N.

Kim, J.

Knight, J. C.

Kubota, H.

Leonhardt, R.

Nakazawa, M.

Nowak, G. A.

Poprawe, R.

Ranka, J. K.

Russbüldt, P.

Russell, P. St. J.

Stentz, A. J.

Sucha, G.

Tamura, K. R.

Udem, Th.

Wadsworth, W. J.

Wegener, M.

Windeler, R.

Windeler, R. S.

Wood, D.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Ye, J.

Zimmermann, M.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Other (2)

A. L. Gaeta, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 48, paper CMK3.

G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectra (left) and temporal intensities (right) for five simulations with a 10-kW peak power 150-fs input pulse at 850 nm. Dispersion β2 is also shown (left, top); the dotted line shows the ZDW.

Fig. 2
Fig. 2

For propagation distances of (a) 2 cm, (b) 5 cm, and (c) 10 cm the top curves show the temporal intensity distribution obtained from one simulation and the bottom curves show the mean spectrum (left axis) and the degree of coherence (right axis) calculated from an ensemble average.

Fig. 3
Fig. 3

For input pulse durations of (a) 150 fs, (b) 100 fs, and (c) 50 fs the top curves show the output temporal intensity from one simulation and the bottom curves show the mean spectrum (left axis) and the degree of coherence (right axis) calculated from an ensemble average.

Fig. 4
Fig. 4

Mean spectrum (left axis) and calculated degree of coherence (right axis) obtained with 10-kW, 150-fs-duration pulses injected at the wavelengths shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Az-ik2ikβkk!kAtk=iγ1+iω0t×Az,t-tRtAz,t-t2dt,
g121λ,t1-t2=E1*λ,t1E2λ,t2E1λ,t12E2λ,t221/2.

Metrics