Abstract

Parametric amplifiers driven by two pump waves are studied numerically. For typical parameters, one can design an amplifier that produces uniform gain over a range of wavelengths that extends at least 33 nm on either side of the average pump wavelength.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  3. M. E. Marhic, K. Nagi, T. K. Chang, and L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [CrossRef] [PubMed]
  4. J. Hansryd and P. A. Anderkson, IEEE Photon. Technol. Lett. 13, 194 (2001).
    [CrossRef]
  5. M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 48, 2178 (1993).
    [CrossRef]
  6. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  7. G. G. Luther and C. J. McKinstrie, J. Opt. Soc. Am. B 9, 1047 (1992).
    [CrossRef]
  8. M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
    [CrossRef]
  9. M. O. van Deventer, Fundamentals of Bidirectional Transmission Over a Single Optical Fiber (Kluwer, Boston, Mass., 1996).
    [CrossRef]

2001

J. Hansryd and P. A. Anderkson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

1996

1995

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

1993

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 48, 2178 (1993).
[CrossRef]

1992

1982

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Agrawal, G. P.

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 48, 2178 (1993).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Anderkson, P. A.

J. Hansryd and P. A. Anderkson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Chang, T. K.

Chraplyvy, A. R.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Hansryd, J.

J. Hansryd and P. A. Anderkson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

Kazovsky, L. G.

Luther, G. G.

Marhic, M. E.

McKinstrie, C. J.

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 48, 2178 (1993).
[CrossRef]

G. G. Luther and C. J. McKinstrie, J. Opt. Soc. Am. B 9, 1047 (1992).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Nagi, K.

Radic, S.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer, Fundamentals of Bidirectional Transmission Over a Single Optical Fiber (Kluwer, Boston, Mass., 1996).
[CrossRef]

Yu, M.

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 48, 2178 (1993).
[CrossRef]

IEEE J. Quantum Electron.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Hansryd and P. A. Anderkson, IEEE Photon. Technol. Lett. 13, 194 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. E

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 52, 1072 (1995).
[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E 48, 2178 (1993).
[CrossRef]

Other

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. (to be published).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

M. O. van Deventer, Fundamentals of Bidirectional Transmission Over a Single Optical Fiber (Kluwer, Boston, Mass., 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Wave spectrum.

Fig. 2
Fig. 2

Frequency-dependent gain for the case in which β4=2.5×10-4 ps4/km, ω1=-32.8 THz, and ω2=32.8 THz. The solid, long-dashed, medium-dashed and short-dashed curves represent the 1-, 1+, 2- and 2+ sidebands, respectively, and the vertical lines denote the pump frequencies. (a) The 1+ sideband is the signal. (b) The 1- sideband is the signal. (c) NS simulation of two pumps interacting with broad-bandwidth noise.

Fig. 3
Fig. 3

NS simulation of two pumps interacting with broad-bandwidth noise for the case in which β4=2.5×10-4 ps4/km, ω1=-48.9 THz, and ω2=48.1 THz.

Fig. 4
Fig. 4

Frequency-dependent gain for the case in which β4=-2.5×10-4 ps4/km, ω1=-32.3 THz, and ω2=33.2 THz. (a) The 1+ sideband is the signal. (b) The 1- sideband is the signal. (c) NS simulation of two pumps interacting with broad-bandwidth noise. The curves and lines are as defined in the caption of Fig. 2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Et,z=At,zexpik0z-ω0t+c.c.,
-izA=βitA+γA2A,
At,z=P11/2 expiϕ1z-ω1t+12,
ϕ1z=βω1z+γP1+2P2z.
A1±t,z=B1±zexpiϕ1z-iω1±t.
dzB1-*=-iδβ1-+γP1B1-*-iγP1B1+-i2γP1P21/2B2-*-i2γP1P21/2B2+,
dzB1+=iγP1B1-*+iδβ1++γP1B1++i2γP1P21/2B2-*+i2γP1P21/2B2+,
δβ1±=βω1±-βω1.

Metrics