Abstract

A real-time, frequency-translated holographic imaging system has been developed by use of bacteriorhodopsin film. The system provides a capability for imaging surface acoustic waves and has been utilized to detect and characterize surface-breaking defects through near-field ultrasonic scattering effects. Frequency-plane filtering was used to discriminate between ultrasonic standing-wave and near-field scattering features, dramatically enhancing the holographic visualization of the defect sites. A detailed description of the system is presented, along with representative holographic images showing the interaction of surface acoustic waves with surface-breaking cracks and small notches in aluminum and titanium substrates.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription