Abstract

We present an interferometric technique for measurement of the dispersion of birefringence in polarization-maintaining fibers. The approach yields measurements over a broad spectral range from analysis of single interferograms obtained in a tandem inteferometer. The technique is demonstrated to measure first-, second-, and third-order dispersion of the differential propagation constant, corresponding to differential group delay (DGD) and its dispersion to second order; measurements are immune to asymmetry in the interferomgram that is being processed. The technique is further applied to measurement of the temperature dependence of DGD and its first-order dispersion.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow and T. L. Koch, eds., Optical Fiber Telecommunications, (Academic, San Diego, Calif., 1997), Vol. IIIA.
  2. T. R. Wolinski, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 2000), Vol. XL, pp. 1–75.
    [CrossRef]
  3. D. Penninckx and S. Lanne, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 1.1–1.4.
  4. H. Kogelnik, L. E. Nelson, J. P. Gordon, and R. M. Jopson, Opt. Lett. 25, 19 (2000).
    [CrossRef]
  5. A. Eyal, Y. Li, W. K. Marsall, and A. Yariv, Opt. Lett. 25, 875 (2000).
    [CrossRef]
  6. W. Urbancyyk and W. J. Bock, Appl. Opt. 33, 124 (1994).
    [CrossRef]
  7. D. A. Flavin, R. McBride, and J. D. C. Jones, Opt. Commun. 156, 367 (1998).
    [CrossRef]
  8. Y. J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
    [CrossRef]
  9. M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Electron. Lett. 19, 246 (1983).
    [CrossRef]
  10. N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).
  11. D. A. Flavin, R. McBride, J. G. Burnett, A. H. Greenway, and J. D. C. Jones, Opt. Lett. 19, 2167 (1994).
    [CrossRef] [PubMed]
  12. P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
    [CrossRef]
  13. L. Thevenaz, J.-P. Pellaux, N. Gisin, and J-P. VonDerWeid, J. Lightwave Technol. 7, 1207 (1989).
    [CrossRef]
  14. B. Deutsch, T. Rummel, W. E. Heinlein, and D. J. Richardson, Electron. Lett. 28, 2140 (1992).
    [CrossRef]

2000 (2)

1998 (1)

D. A. Flavin, R. McBride, and J. D. C. Jones, Opt. Commun. 156, 367 (1998).
[CrossRef]

1996 (1)

Y. J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

1994 (2)

1992 (1)

B. Deutsch, T. Rummel, W. E. Heinlein, and D. J. Richardson, Electron. Lett. 28, 2140 (1992).
[CrossRef]

1989 (2)

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

L. Thevenaz, J.-P. Pellaux, N. Gisin, and J-P. VonDerWeid, J. Lightwave Technol. 7, 1207 (1989).
[CrossRef]

1983 (1)

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Electron. Lett. 19, 246 (1983).
[CrossRef]

1978 (1)

N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).

Alard, F. R.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Electron. Lett. 19, 246 (1983).
[CrossRef]

Bock, W. J.

Burnett, J. G.

Deutsch, B.

B. Deutsch, T. Rummel, W. E. Heinlein, and D. J. Richardson, Electron. Lett. 28, 2140 (1992).
[CrossRef]

Durteste, Y.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Eyal, A.

Flavin, D. A.

Francois, P. L.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Gisin, N.

L. Thevenaz, J.-P. Pellaux, N. Gisin, and J-P. VonDerWeid, J. Lightwave Technol. 7, 1207 (1989).
[CrossRef]

Gordon, J. P.

Greenway, A. H.

Heinlein, W. E.

B. Deutsch, T. Rummel, W. E. Heinlein, and D. J. Richardson, Electron. Lett. 28, 2140 (1992).
[CrossRef]

Jackson, D. A.

Y. J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

Jones, J. D. C.

Jopson, R. M.

Kogelnik, H.

Lanne, S.

D. Penninckx and S. Lanne, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 1.1–1.4.

Li, Y.

Marsall, W. K.

McBride, R.

Monerie, M.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Nelson, L. E.

Payne, D. N.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Electron. Lett. 19, 246 (1983).
[CrossRef]

Pellaux, J.-P.

L. Thevenaz, J.-P. Pellaux, N. Gisin, and J-P. VonDerWeid, J. Lightwave Technol. 7, 1207 (1989).
[CrossRef]

Penninckx, D.

D. Penninckx and S. Lanne, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 1.1–1.4.

Rao, Y. J.

Y. J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

Richardson, D. J.

B. Deutsch, T. Rummel, W. E. Heinlein, and D. J. Richardson, Electron. Lett. 28, 2140 (1992).
[CrossRef]

Rummel, T.

B. Deutsch, T. Rummel, W. E. Heinlein, and D. J. Richardson, Electron. Lett. 28, 2140 (1992).
[CrossRef]

Sinha, N. K.

N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Electron. Lett. 19, 246 (1983).
[CrossRef]

Thevenaz, L.

L. Thevenaz, J.-P. Pellaux, N. Gisin, and J-P. VonDerWeid, J. Lightwave Technol. 7, 1207 (1989).
[CrossRef]

Urbancyyk, W.

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Electron. Lett. 19, 246 (1983).
[CrossRef]

Vassallo, C.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

VonDerWeid, J-P.

L. Thevenaz, J.-P. Pellaux, N. Gisin, and J-P. VonDerWeid, J. Lightwave Technol. 7, 1207 (1989).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 2000), Vol. XL, pp. 1–75.
[CrossRef]

Yariv, A.

Appl. Opt. (1)

Electron. Lett. (2)

B. Deutsch, T. Rummel, W. E. Heinlein, and D. J. Richardson, Electron. Lett. 28, 2140 (1992).
[CrossRef]

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Electron. Lett. 19, 246 (1983).
[CrossRef]

J. Lightwave Technol. (2)

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

L. Thevenaz, J.-P. Pellaux, N. Gisin, and J-P. VonDerWeid, J. Lightwave Technol. 7, 1207 (1989).
[CrossRef]

Meas. Sci. Technol. (1)

Y. J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

Opt. Commun. (1)

D. A. Flavin, R. McBride, and J. D. C. Jones, Opt. Commun. 156, 367 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Chem. Glasses (1)

N. K. Sinha, Phys. Chem. Glasses 19, 69 (1978).

Other (3)

I. P. Kaminow and T. L. Koch, eds., Optical Fiber Telecommunications, (Academic, San Diego, Calif., 1997), Vol. IIIA.

T. R. Wolinski, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 2000), Vol. XL, pp. 1–75.
[CrossRef]

D. Penninckx and S. Lanne, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 1.1–1.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical configuration: LCS, low-coherence source; M1–M4, mirrors; L1, L2, microscope objectives; P, A, polarizers; D1, D2, photodetectors; MTS, translation stage; BS, beam splitter.

Fig. 2
Fig. 2

(a) Differential phase ϕδω, recovered from the phase of the FT of one windowed satellite interferogram. There are 150 discrete phase measurements in the range from 278 to 480 THz. (b) Differential phase recovered from interferograms generated by cross coupling of the eigenmodes at two points separated by 4.5 m in a 25-m-length fiber.

Fig. 3
Fig. 3

(a) Measured differential phase, modal birefringence, and beat length over the wavelength range 625 to 1075 nm. (b) Measured values of the first-, second-, and third-order dependence of the differential propagation constant, dβδω/dω, d2βδω/dω2, and d3βδω/dω3, respectively, at 0.2-THz intervals over the range 355 to 475 THz. These curves also correspond to the DGD, τδω, and its first- and second-order dispersion, dτδω/dω and d2τδω/dω2, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Bω=cωβδω,  LBω=2πβδω, τδωdβδωdω,  τδiωdβδi+1ωdωi+1.
Iτr=I0Rγ˜0τr+12Rγ˜d-τr+12Rγ˜dτr,
γ˜0τr=-Gˆωexp-iωτrdω,
γ˜dτr=-Gˆωexp-iϕδωexp-iωτrdω,
βδωϕδωL=βδω0+βδ1ω0Ω+12βδ2ω0Ω2+16βδ3ω0Ω3+,

Metrics