Abstract

A novel monitoring system for a fiber Fabry–Perot interferometer (FFPI) temperature sensor has yielded a resolution of 0.013 °C (0.0025 fringe). Light from a broadband source passes through a scanned Michelson interferometer and is reflected from a FFPI to produce a fringe pattern, the temporal position of which is proportional to a change in the optical length of the fiber interferometer. A second Michelson interferometer with a distributed-feedback laser source is used to correct for variations in the translation rate of the motor-driven scanning mirror. Coherence multiplexing of three such sensors has also been demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription