Abstract

A new model that describes the influence of a laser intracavity frequency shifter is proposed. Laser line broadening that is due to the presence of the frequency shift is derived. The theoretical model is validated by experimental results. Multiwavelength operation of this laser is explained.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sasamori, K. Isshiki, H. Watanabe, and K. Kasahara, Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 235.
  2. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, J. Lightwave Technol. 18, 825 (2000).
    [CrossRef]
  3. S. K. Kim, M. J. Chu, D. H. Lee, and J. G. Kim, in Optical Fiber Communication Conference (OFC), Vol. 37 of 2000 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThA3.
  4. S. K. Kim, M. J. Chu, and J. H. Lee, Opt. Commun. 190, 291 (2001).
    [CrossRef]
  5. M. Karasek and A. Bellemare, IEE Proc. Optoelectron. 147, 115 (2000).
    [CrossRef]
  6. M. Karasek, J. Opt. A 3, 96 (2001).
    [CrossRef]
  7. H. Sabert and E. Brinkmeyer, J. Lightwave Technol. 12, 1360 (1994).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

2001

S. K. Kim, M. J. Chu, and J. H. Lee, Opt. Commun. 190, 291 (2001).
[CrossRef]

M. Karasek, J. Opt. A 3, 96 (2001).
[CrossRef]

2000

1994

H. Sabert and E. Brinkmeyer, J. Lightwave Technol. 12, 1360 (1994).
[CrossRef]

Bellemare, A.

Brinkmeyer, E.

H. Sabert and E. Brinkmeyer, J. Lightwave Technol. 12, 1360 (1994).
[CrossRef]

Chu, M. J.

S. K. Kim, M. J. Chu, and J. H. Lee, Opt. Commun. 190, 291 (2001).
[CrossRef]

S. K. Kim, M. J. Chu, D. H. Lee, and J. G. Kim, in Optical Fiber Communication Conference (OFC), Vol. 37 of 2000 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThA3.

Isshiki, K.

H. Sasamori, K. Isshiki, H. Watanabe, and K. Kasahara, Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 235.

Karasek, M.

M. Karasek, J. Opt. A 3, 96 (2001).
[CrossRef]

M. Karasek and A. Bellemare, IEE Proc. Optoelectron. 147, 115 (2000).
[CrossRef]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, J. Lightwave Technol. 18, 825 (2000).
[CrossRef]

Kasahara, K.

H. Sasamori, K. Isshiki, H. Watanabe, and K. Kasahara, Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 235.

Kim, J. G.

S. K. Kim, M. J. Chu, D. H. Lee, and J. G. Kim, in Optical Fiber Communication Conference (OFC), Vol. 37 of 2000 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThA3.

Kim, S. K.

S. K. Kim, M. J. Chu, and J. H. Lee, Opt. Commun. 190, 291 (2001).
[CrossRef]

S. K. Kim, M. J. Chu, D. H. Lee, and J. G. Kim, in Optical Fiber Communication Conference (OFC), Vol. 37 of 2000 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThA3.

LaRochelle, S.

Lee, D. H.

S. K. Kim, M. J. Chu, D. H. Lee, and J. G. Kim, in Optical Fiber Communication Conference (OFC), Vol. 37 of 2000 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThA3.

Lee, J. H.

S. K. Kim, M. J. Chu, and J. H. Lee, Opt. Commun. 190, 291 (2001).
[CrossRef]

Rochette, M.

Sabert, H.

H. Sabert and E. Brinkmeyer, J. Lightwave Technol. 12, 1360 (1994).
[CrossRef]

Sasamori, H.

H. Sasamori, K. Isshiki, H. Watanabe, and K. Kasahara, Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 235.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Tetu, M.

Watanabe, H.

H. Sasamori, K. Isshiki, H. Watanabe, and K. Kasahara, Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 235.

2000 OSA Trends in Optics and Photonics Series

S. K. Kim, M. J. Chu, D. H. Lee, and J. G. Kim, in Optical Fiber Communication Conference (OFC), Vol. 37 of 2000 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThA3.

IEE Proc. Optoelectron.

M. Karasek and A. Bellemare, IEE Proc. Optoelectron. 147, 115 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. A

M. Karasek, J. Opt. A 3, 96 (2001).
[CrossRef]

Opt. Commun.

S. K. Kim, M. J. Chu, and J. H. Lee, Opt. Commun. 190, 291 (2001).
[CrossRef]

OSA Trends in Optics and Photonics Series

H. Sasamori, K. Isshiki, H. Watanabe, and K. Kasahara, Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 235.

Other

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser configuration.

Fig. 2
Fig. 2

Fourier coupling coefficients for various parameters of the laser.

Fig. 3
Fig. 3

Envelope of calculated intensity of laser cavity modes for various frequency shifts and cavity losses. The zero on the x axis corresponds to the central frequency of the optical filter.

Fig. 4
Fig. 4

Measured (filled circles) and calculated (solid curve) rf self-beating spectrum of the laser peak.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dIidt=α01+κkIk-liIi,    dt=T.
expiω-2πνt=j=0,±1,aj expiω-jΔωt,
aj=c2πiνnL-jcexpi2πcjc-νnL-1,
IiFS=j=-j=aj2Ii+j.
dIidt=α01+κkIk-lijaj2Ii+j,dt=T.
jaj2Ih+j<Ih,    jaj2=1.

Metrics