Abstract

We report on holographic recording of nanosecond events on a conventional CCD camera. Three frames of an air-discharge event, with resolution of 5.9 ns and frame interval of 12 ns, are recorded in a single CCD frame. Each individual frame is reconstructed by digital filtering of the CCD frame, since successively recorded holograms are centered at different carrier frequencies in the spatial frequency domain.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic interferometry,” J. Appl. Phys. 37, 642–649 (1966).
    [CrossRef]
  2. T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
    [CrossRef]
  3. M. J. Ehrlich, J. S. Steckenrider, and J. W. Wagner, “System for high-speed time-resolved holography of transient events,” Appl. Opt. 31, 5947–5951 (1992).
    [CrossRef] [PubMed]
  4. S. Suzuki, Y. Nozaki, and H. Kimura, “High-speed holographic microscopy for fast-propagating cracks in transparent materials,” Appl. Opt. 36, 7224–7233 (1997).
    [CrossRef]
  5. Z. Liu, G. Steckman, and D. Psaltis, “Holographic recordings of fast phenomena,” submitted to Appl. Phys. Lett.
  6. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  7. G. Indebetouw and P. Klysubun, “Space-time digital holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
    [CrossRef]
  8. S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggarwal, and M. E. Gusev, “Highly sensitive pulsed digital holography for built-in defect analysis with a laser excitation,” Appl. Opt. 40, 100–103 (2001).
    [CrossRef]
  9. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
    [CrossRef]
  10. H. Sobral, M. Villagran-Muniz, R. Navarro-Gonzalez, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77, 3158–3160 (2000).
    [CrossRef]
  11. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  12. http://www.drs.com .

2001 (1)

2000 (1)

H. Sobral, M. Villagran-Muniz, R. Navarro-Gonzalez, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77, 3158–3160 (2000).
[CrossRef]

1999 (3)

1997 (1)

1992 (1)

1978 (1)

T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
[CrossRef]

1966 (1)

L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic interferometry,” J. Appl. Phys. 37, 642–649 (1966).
[CrossRef]

Aggarwal, A. K.

Bevilacqua, F.

Brooks, R. E.

L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic interferometry,” J. Appl. Phys. 37, 642–649 (1966).
[CrossRef]

Cuche, E.

Depeursinge, C.

Ehrlich, M. J.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Gusev, M. E.

Heflinger, L. O.

L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic interferometry,” J. Appl. Phys. 37, 642–649 (1966).
[CrossRef]

Indebetouw, G.

G. Indebetouw and P. Klysubun, “Space-time digital holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

Kimura, H.

Klysubun, P.

G. Indebetouw and P. Klysubun, “Space-time digital holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

Liu, Z.

Z. Liu, G. Steckman, and D. Psaltis, “Holographic recordings of fast phenomena,” submitted to Appl. Phys. Lett.

Navarro-Gonzalez, R.

H. Sobral, M. Villagran-Muniz, R. Navarro-Gonzalez, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77, 3158–3160 (2000).
[CrossRef]

Nozaki, Y.

Pedrini, G.

Psaltis, D.

Z. Liu, G. Steckman, and D. Psaltis, “Holographic recordings of fast phenomena,” submitted to Appl. Phys. Lett.

Raga, A. C.

H. Sobral, M. Villagran-Muniz, R. Navarro-Gonzalez, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77, 3158–3160 (2000).
[CrossRef]

Santoyo, F. M.

Sasaki, T.

T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
[CrossRef]

Schedin, S.

Sobral, H.

H. Sobral, M. Villagran-Muniz, R. Navarro-Gonzalez, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77, 3158–3160 (2000).
[CrossRef]

Steckenrider, J. S.

Steckman, G.

Z. Liu, G. Steckman, and D. Psaltis, “Holographic recordings of fast phenomena,” submitted to Appl. Phys. Lett.

Suzuki, S.

Tanaka, K.

T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
[CrossRef]

Tiziani, H. J.

Tschudi, T.

T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
[CrossRef]

Villagran-Muniz, M.

H. Sobral, M. Villagran-Muniz, R. Navarro-Gonzalez, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77, 3158–3160 (2000).
[CrossRef]

Wagner, J. W.

Wuerker, R. F.

L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic interferometry,” J. Appl. Phys. 37, 642–649 (1966).
[CrossRef]

Yamanaka, C.

T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
[CrossRef]

Yoshida, K.

T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

H. Sobral, M. Villagran-Muniz, R. Navarro-Gonzalez, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77, 3158–3160 (2000).
[CrossRef]

G. Indebetouw and P. Klysubun, “Space-time digital holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

J. Appl. Phys. (1)

L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic interferometry,” J. Appl. Phys. 37, 642–649 (1966).
[CrossRef]

J. Phys. D (1)

T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, “A study of high-power laser effects in dielectrics using multiframe picosecond holography,” J. Phys. D 11, 177–180 (1978).
[CrossRef]

Opt. Lett. (1)

Other (3)

Z. Liu, G. Steckman, and D. Psaltis, “Holographic recordings of fast phenomena,” submitted to Appl. Phys. Lett.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

http://www.drs.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Carrier multiplexing. FFT, fast Fourier transform; IFFT, inverse fast Fourier transform.

Fig. 2
Fig. 2

Digital reconstruction of a CCD hologram: a, interference pattern; b, c, sidebands; d, reconstructed signal, S.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Pulsed holograms recorded on a CCD camera. a and b are the plane-wave holograms and the corresponding dc filtered Fourier transform, respectively. c and d are the holograms and Fourier transform, respectively, of an air-discharge event. Three frames are recorded, and the frame interval is 12 ns.

Fig. 5
Fig. 5

Frame reconstruction: a–c, reconstructed frames without diffraction compensation; d–f, frames that were digitally compensated for diffraction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=R+S2=R2+S2+R*S+RS*,
Six,y,z=Ri*x1,y1Six1,y1×expjπλzx-x12+y-y12dx1dy1=expjπλzx2+y2Ri*x1,y1Six1,y1×expjπλzx12+y12exp-j2πλzxx1+yy1dx1dy1.

Metrics