Abstract

We demonstrate the recording of holograms and their nondestructive readout in a photorefractive polymer, using two-photon absorption. Sensitivity is provided by the excitation of the electroactive chromophore with femtosecond pulses, followed by charge injection into the photoconducting poly(N-vinylcarbazole) matrix. The holograms can be fully erased with a pulsed laser source but are insensitive to cw laser beams with the same wavelength. Studies of the field and intensity dependence of the diffraction efficiency indicate that the holograms are formed through the photorefractive effect.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
    [CrossRef]
  2. D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 47, 217 (1976).
  3. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).
    [CrossRef] [PubMed]
  4. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
    [CrossRef]
  5. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
    [CrossRef]
  6. S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett. 73, 2047 (1994).
    [CrossRef] [PubMed]
  7. B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1996), Chap. 7, p. 482.

1998

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

1994

S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett. 73, 2047 (1994).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

1991

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).
[CrossRef] [PubMed]

1976

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 47, 217 (1976).

1974

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Bjorklund, G. C.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett. 73, 2047 (1994).
[CrossRef] [PubMed]

Casperson, J. D.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

DeClue, M.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

Diaz-Garcia, M. A.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).
[CrossRef] [PubMed]

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 47, 217 (1976).

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Kippelen, B.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1996), Chap. 7, p. 482.

Meerholz, K.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1996), Chap. 7, p. 482.

Moerner, W. E.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett. 73, 2047 (1994).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).
[CrossRef] [PubMed]

Peyghambarian, N.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1996), Chap. 7, p. 482.

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 47, 217 (1976).

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).
[CrossRef] [PubMed]

Silence, S. M.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett. 73, 2047 (1994).
[CrossRef] [PubMed]

Twieg, R. J.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett. 73, 2047 (1994).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).
[CrossRef] [PubMed]

Volodin, B. L.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 47, 217 (1976).

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Wright, D.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

Appl. Phys. Lett.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 47, 217 (1976).

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef]

Nature

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

Phys. Rev. Lett.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett. 73, 2047 (1994).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).
[CrossRef] [PubMed]

Other

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1996), Chap. 7, p. 482.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of the electroactive molecule FTCN used as two-photon sensitizer.

Fig. 2
Fig. 2

Linear absorption spectrum of a 105µm-thick sample of FTCN:PVK:ECZ:BBP. The filled arrow indicates the spectral position of the laser source. Inset, linear absorption spectrum of a thin film of the same sample, showing the lowest excited state of the FTCN molecule. The open arrow indicates the spectral position of the two-photon excitation.

Fig. 3
Fig. 3

Diffraction efficiency as a function of the delay between the two writing pulses measured at an applied field of 50 V/µm and with an average power of the writing beams of 0.5 mW 5.3 GW/cm2. The squares are experimental points. The curve is a fit with a Gaussian function.

Fig. 4
Fig. 4

Diffraction efficiency as a function of applied field. The squares are experimental points. The curve is the function η=aE4 with a=2.225×10-9, where E is the applied field. The sum of the intensities of the two writing pulses was 5 GW/cm2. Diffraction efficiency was measured at the maximum temporal overlap of the writing beams.

Fig. 5
Fig. 5

Diffraction efficiency as a function of the sum of the intensities of the two writing pulses measured at an applied field of 50 V/µm. The squares are experimental points. The curve is the function η=bI1.86, with b=0.001, where I is the total intensity. Diffraction efficiency was measured at the maximum temporal overlap of the writing beams.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α2=Nδ/ω,

Metrics