Abstract

It is shown that phase-locked pulses as short as 3  fs can be generated by coherent scattering in impulsively excited Raman media without the necessity of external phase control. The underlying mechanism, temporal characteristics, spectra, phase relations, physical limitations owing to competition processes, and precompensation of dispersion by the hollow waveguide window are studied analytically and numerically without the use of the slowly varying envelope approximation and with a global approach to dispersion. Additionally, the large frequency shifts in both the Stokes and anti-Stokes directions of as much as half the carrier frequency raise the possibility of generating widely tunable ultrashort pulses.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent review, see T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
    [CrossRef]
  2. V. P. Kalosha and J. Herrmann, Phys. Rev. Lett. 85, 1226 (2000).
    [CrossRef] [PubMed]
  3. Y.-X. Yan, E. B. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
    [CrossRef]
  4. M. Wittmann, A. Nazarkin, and G. Korn, Phys. Rev. Lett. 84, 5508 (2000).
    [CrossRef] [PubMed]
  5. H. Kawano, T. Mori, Y. Hirakawa, and T. Imasaka, Phys. Rev. A 59, 4703 (1999).
    [CrossRef]
  6. S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
    [CrossRef]
  7. V. P. Kalosha and J. Herrmann, Phys. Rev. A 62, 011804 (2000).
    [CrossRef]

2000

For a recent review, see T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

V. P. Kalosha and J. Herrmann, Phys. Rev. Lett. 85, 1226 (2000).
[CrossRef] [PubMed]

M. Wittmann, A. Nazarkin, and G. Korn, Phys. Rev. Lett. 84, 5508 (2000).
[CrossRef] [PubMed]

V. P. Kalosha and J. Herrmann, Phys. Rev. A 62, 011804 (2000).
[CrossRef]

1999

H. Kawano, T. Mori, Y. Hirakawa, and T. Imasaka, Phys. Rev. A 59, 4703 (1999).
[CrossRef]

1998

S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[CrossRef]

1985

Y.-X. Yan, E. B. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Brabec, T.

For a recent review, see T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Gamble, E. B.

Y.-X. Yan, E. B. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Harris, S. E.

S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[CrossRef]

Herrmann, J.

V. P. Kalosha and J. Herrmann, Phys. Rev. Lett. 85, 1226 (2000).
[CrossRef] [PubMed]

V. P. Kalosha and J. Herrmann, Phys. Rev. A 62, 011804 (2000).
[CrossRef]

Hirakawa, Y.

H. Kawano, T. Mori, Y. Hirakawa, and T. Imasaka, Phys. Rev. A 59, 4703 (1999).
[CrossRef]

Imasaka, T.

H. Kawano, T. Mori, Y. Hirakawa, and T. Imasaka, Phys. Rev. A 59, 4703 (1999).
[CrossRef]

Kalosha, V. P.

V. P. Kalosha and J. Herrmann, Phys. Rev. A 62, 011804 (2000).
[CrossRef]

V. P. Kalosha and J. Herrmann, Phys. Rev. Lett. 85, 1226 (2000).
[CrossRef] [PubMed]

Kawano, H.

H. Kawano, T. Mori, Y. Hirakawa, and T. Imasaka, Phys. Rev. A 59, 4703 (1999).
[CrossRef]

Korn, G.

M. Wittmann, A. Nazarkin, and G. Korn, Phys. Rev. Lett. 84, 5508 (2000).
[CrossRef] [PubMed]

Krausz, F.

For a recent review, see T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Mori, T.

H. Kawano, T. Mori, Y. Hirakawa, and T. Imasaka, Phys. Rev. A 59, 4703 (1999).
[CrossRef]

Nazarkin, A.

M. Wittmann, A. Nazarkin, and G. Korn, Phys. Rev. Lett. 84, 5508 (2000).
[CrossRef] [PubMed]

Nelson, K. A.

Y.-X. Yan, E. B. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Sokolov, A. V.

S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[CrossRef]

Wittmann, M.

M. Wittmann, A. Nazarkin, and G. Korn, Phys. Rev. Lett. 84, 5508 (2000).
[CrossRef] [PubMed]

Yan, Y.-X.

Y.-X. Yan, E. B. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

J. Chem. Phys.

Y.-X. Yan, E. B. Gamble, and K. A. Nelson, J. Chem. Phys. 83, 5391 (1985).
[CrossRef]

Phys. Rev. A

H. Kawano, T. Mori, Y. Hirakawa, and T. Imasaka, Phys. Rev. A 59, 4703 (1999).
[CrossRef]

V. P. Kalosha and J. Herrmann, Phys. Rev. A 62, 011804 (2000).
[CrossRef]

Phys. Rev. Lett.

S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[CrossRef]

M. Wittmann, A. Nazarkin, and G. Korn, Phys. Rev. Lett. 84, 5508 (2000).
[CrossRef] [PubMed]

V. P. Kalosha and J. Herrmann, Phys. Rev. Lett. 85, 1226 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys.

For a recent review, see T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Solution  (4) for 20-fs (a), (c) in-phase and (b), (d) out-of-phase pulses and Ωγz=1.2, ωpr=2.39 fs-1 λpr=790 nm, and Ω=587 cm-1 TR=57 fs: (a), (b) Pulse intensity (solid curve), initial pulse envelope (dashed curves), molecular variable uη in arbitrary scale (dotted curve). (c), (d) Fourier-transformed output (solid curves) and initial (dashed curves) field.

Fig. 2
Fig. 2

(a), (b) Temporal and (c), (d) spectral characteristics of (a), (c) pump and (b), (d) probe pulses for an out-of-phase delay in H2. The meaning of the curves is the same as in Fig.  1. The parameters are pump intensity I0=5 TW/cm2; probe intensity, 50 GW/cm2; delay, 1  ps; z=2.4 m in (a) and (b); τpu=τpr=20 fs; λpu=λpr=790 nm; η0=1 ps; a=100 μm; pressure, 1  atm.

Fig. 3
Fig. 3

(a) Probe-pulse compression and (b) evolution of the spectrum of second-harmonic input. The curves and the parameters are the same as in Fig.  2, except for λpr=395 nm and z=1 m in (a).

Fig. 4
Fig. 4

Precompensation for dispersion by the fused-silica glass window. The parameters z, λpr, and silica thickness are 1.6  m, 790  nm, and 0.15  mm in (a) and 0.6  m, 395  nm, and 0.1  mm in (b). Other parameters are the same as in Fig.  2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ez=-cμ02Pη,
t+1T2-iΩρ12=i2α11-α22ρ12+α12wE2,
wt+w+1T1=i2α12ρ12-ρ12*E2,
Eprz,η=E0ssinΩssinΩη,
Eprz,ω=m=-JmωprγzAω-ωpr+mΩ×expimΩη0,

Metrics