Abstract

Fourier synthesis of ultrafast optical-pulse trains was demonstrated based on optical phase locking of three independent continuous-wave semiconductor lasers. Pulse repetition frequencies as high as 1.81  THz were limited by the gain bandwidth of an erbium-doped fiber amplifier. The waveforms of the pulse trains were maintained over a long period by use of an auxiliary optical phase-locked loop. The repetition frequency could be tuned continuously over a range of 100  MHz.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, Opt. Lett. 19, 834 (1994).
    [CrossRef] [PubMed]
  2. E. Yamada, E. Yoshida, T. Kitoh, and M. Nakazawa, Electron. Lett. 31, 1342 (1995).
    [CrossRef]
  3. T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
    [CrossRef]
  4. M. Hyodo, N. Onodera, and K. S. Abedin, Opt. Lett. 24, 303 (1999).
    [CrossRef]
  5. M. Hyodo, N. Onodera, and K. S. Abedin, Electron. Lett. 35, 564 (1999).
    [CrossRef]
  6. G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
    [CrossRef]
  7. M. Hyodo, K. S. Abedin, and N. Onodera, Opt. Commun. 171, 159 (1999).
    [CrossRef]
  8. M. Hyodo, K. S. Abedin, and N. Onodera, Electron. Lett. 36, 224 (2000).
    [CrossRef]

2000 (1)

M. Hyodo, K. S. Abedin, and N. Onodera, Electron. Lett. 36, 224 (2000).
[CrossRef]

1999 (3)

M. Hyodo, N. Onodera, and K. S. Abedin, Electron. Lett. 35, 564 (1999).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, Opt. Commun. 171, 159 (1999).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Opt. Lett. 24, 303 (1999).
[CrossRef]

1995 (1)

E. Yamada, E. Yoshida, T. Kitoh, and M. Nakazawa, Electron. Lett. 31, 1342 (1995).
[CrossRef]

1994 (1)

1993 (1)

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

1989 (1)

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Abedin, K. S.

M. Hyodo, K. S. Abedin, and N. Onodera, Electron. Lett. 36, 224 (2000).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Electron. Lett. 35, 564 (1999).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Opt. Lett. 24, 303 (1999).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, Opt. Commun. 171, 159 (1999).
[CrossRef]

Arahira, S.

Hänsch, T. W.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Hough, J.

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Hyodo, M.

M. Hyodo, K. S. Abedin, and N. Onodera, Electron. Lett. 36, 224 (2000).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Electron. Lett. 35, 564 (1999).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Opt. Lett. 24, 303 (1999).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, Opt. Commun. 171, 159 (1999).
[CrossRef]

Kerr, G. A.

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Kitoh, T.

E. Yamada, E. Yoshida, T. Kitoh, and M. Nakazawa, Electron. Lett. 31, 1342 (1995).
[CrossRef]

Kunii, T.

Matsui, Y.

Mukai, T.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Nakazawa, M.

E. Yamada, E. Yoshida, T. Kitoh, and M. Nakazawa, Electron. Lett. 31, 1342 (1995).
[CrossRef]

Ogawa, Y.

Onodera, N.

M. Hyodo, K. S. Abedin, and N. Onodera, Electron. Lett. 36, 224 (2000).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Electron. Lett. 35, 564 (1999).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Opt. Lett. 24, 303 (1999).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, Opt. Commun. 171, 159 (1999).
[CrossRef]

Oshiba, S.

Wynands, R.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Yamada, E.

E. Yamada, E. Yoshida, T. Kitoh, and M. Nakazawa, Electron. Lett. 31, 1342 (1995).
[CrossRef]

Yoshida, E.

E. Yamada, E. Yoshida, T. Kitoh, and M. Nakazawa, Electron. Lett. 31, 1342 (1995).
[CrossRef]

Appl. Phys. B (1)

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Electron. Lett. (3)

M. Hyodo, K. S. Abedin, and N. Onodera, Electron. Lett. 36, 224 (2000).
[CrossRef]

E. Yamada, E. Yoshida, T. Kitoh, and M. Nakazawa, Electron. Lett. 31, 1342 (1995).
[CrossRef]

M. Hyodo, N. Onodera, and K. S. Abedin, Electron. Lett. 35, 564 (1999).
[CrossRef]

Opt. Commun. (2)

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, Opt. Commun. 171, 159 (1999).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of Fourier synthesis: PM, phase modulator; OD, optical delay; BPF, bandpass filter; SOA1, SOA2, semiconductor optical amplifiers; PD1, PD2, photodetectors; FC1–FC4, 50:50 fiber couplers; DBM, double-balanced mixer; SMF, standard single-mode fiber; EDFA, erbium-doped fiber amplifier. See text for other definitions.

Fig. 2
Fig. 2

Optical spectrum obtained at the SOA output. λ2 and λ3 correspond to Laser 2 and Laser 3.

Fig. 3
Fig. 3

Optical spectrum of the synthesized pulse train. λ1, λ2, and λ3 correspond to Lasers 1, 2, and 3. The three lasers were separated by 1.8  THz in oscillation frequency.

Fig. 4
Fig. 4

SHG-correlation traces of the synthesized pulse trains: (a) Δϕ=0 and (b) Δϕ=π. Δϕ corresponds to the phase difference between Laser 1 and the anti-Stokes wave. Dotted curves, calculated waveforms, solid curves, experimental results. SH, second-harmonic.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

It=3I0+4I0cosΔϕ/2cosΩt+δt+2I0cos2 Ωt+δt,
Iτ9I02+4I021+cosΔϕexp-VΔϕ/2×cosΩτ+2I02cos2 Ωτ,

Metrics