Abstract

The feasibility of an active optical true airspeed sensor was demonstrated with a coherent short-range Doppler lidar. Even at the long wavelength of 10.6 μm, aerosol events at the high altitude of 12,000  m were measured. A comparison of the line-of-sight velocity obtained by lidar measurements with a conventional five-hole probe on an aircraft showed an excellent coincidence in the average value, although the lidar detected turbulence effects much more sensitively.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Frehlich and M. J. Kavaya, Appl. Opt. 30, 5325 (1991), and references therein.
    [CrossRef] [PubMed]
  2. R. L. Gann, Proc. SPIE 2464, 111 (1995).
  3. M. Harris, “Single particle laser Doppler anemometry at 1.55 μm,” Appl. Opt. (to be published ).
  4. S. Rahm, Opt. Lett. 20, 216 (1995).
    [CrossRef] [PubMed]
  5. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

1995 (2)

R. L. Gann, Proc. SPIE 2464, 111 (1995).

S. Rahm, Opt. Lett. 20, 216 (1995).
[CrossRef] [PubMed]

1991 (1)

Frehlich, R. G.

Gann, R. L.

R. L. Gann, Proc. SPIE 2464, 111 (1995).

Harris, M.

M. Harris, “Single particle laser Doppler anemometry at 1.55 μm,” Appl. Opt. (to be published ).

Kavaya, M. J.

Rahm, S.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Appl. Opt. (1)

Opt. Lett. (1)

Proc. SPIE (1)

R. L. Gann, Proc. SPIE 2464, 111 (1995).

Other (2)

M. Harris, “Single particle laser Doppler anemometry at 1.55 μm,” Appl. Opt. (to be published ).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic optical path of the Doppler lidar: M’s, mirrors; BR, Brewster window; L1–L3, lenses; ST1, ST2, beam spliters; P, polarizer; λ/2, half-wave plate; λ/4, quarter-wave plate; CaF, attenuator.

Fig. 2
Fig. 2

Scan pattern when the sensing volume (dark gray area) of the lidar moves at the speed of the platform and the resulting measurement volume (light and dark gray areas). All units are in millimeters.

Fig. 3
Fig. 3

Representative raw signal (top) with the backscattered power from several aerosols calculated (bottom). The arrows mark the locations of the estimated aerosol events.

Fig. 4
Fig. 4

Event density plotted versus altitude (dots) compared with the backscatter coefficient of the ESA standard atmosphere (curve).

Fig. 5
Fig. 5

LOS velocity estimates from single aerosol events (data points) compared with the LOS component of the airflow vector provided by the five-hole probe placed in the nose boom of the aircraft.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR=ητ2σλ3ITrIBPLOrcBPLOD,

Metrics