Abstract

The optical absorption of thin-film thermal infrared detectors was calculated as a function of wavelength, pixel size, and area fill factor by use of the finite-difference time-domain (FDTD) method. The results indicate that smaller pixels absorb a significantly higher percentage of incident energy than larger pixels with the same fill factor. A polynomial approximation to the FDTD results was derived for use in system models.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Kruse and D. D. Skatrud, in Uncooled Infrared Imaging Arrays and Systems, R. K. Willardson and E. R. Weber, eds., Vol. 47 of Semiconductors and Semimetals (Academic, San Diego, Calif., 1997).
  2. A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
    [CrossRef]
  3. V. T. Bly and T. Cox, Appl. Opt. 33, 26 (1994).
    [CrossRef] [PubMed]
  4. W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.
  5. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

1994

1988

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

1966

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Beck, W. A.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Beratan, H. R.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Bly, V. T.

Clark, W.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Cox, T.

Hanson, C. M.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Hoffman, R. C.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Kruse, P. W.

P. W. Kruse and D. D. Skatrud, in Uncooled Infrared Imaging Arrays and Systems, R. K. Willardson and E. R. Weber, eds., Vol. 47 of Semiconductors and Semimetals (Academic, San Diego, Calif., 1997).

Parsons, A. D.

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

Pedder, D. J.

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

Robertson, D. N.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Skatrud, D. D.

P. W. Kruse and D. D. Skatrud, in Uncooled Infrared Imaging Arrays and Systems, R. K. Willardson and E. R. Weber, eds., Vol. 47 of Semiconductors and Semimetals (Academic, San Diego, Calif., 1997).

Soch, K.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Tidrow, M. Z.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Tipton, C. W.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Udayakumar, K. R.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

William, I.

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Yee, K. S.

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Appl. Opt.

IEEE Trans. Antennas Propag.

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

J. Vac. Sci. Technol. A

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

Proceedings of the IRIS Materials Group

W. A. Beck, R. C. Hoffman, D. N. Robertson, M. Z. Tidrow, C. W. Tipton, I. William, W. Clark, H. R. Beratan, K. R. Udayakumar, K. Soch, and C. M. Hanson, in Proceedings of the IRIS Materials Group (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), pp. 275–284.

Semiconductors and Semimetals

P. W. Kruse and D. D. Skatrud, in Uncooled Infrared Imaging Arrays and Systems, R. K. Willardson and E. R. Weber, eds., Vol. 47 of Semiconductors and Semimetals (Academic, San Diego, Calif., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Typical thermal detector structure. (b) Simplified geometry for calculations. 2D, two-dimensional; PEC, perfect electric conductor.

Fig. 2
Fig. 2

Spectral absorption gain for finite and infinite pixels. The pairs of numbers indicate detector size and pixel pitch in micrometers.

Fig. 3
Fig. 3

LWIR absorption gain (300  K blackbody) versus fill factor for different pixel pitches.

Fig. 4
Fig. 4

LWIR absorption gain as a function of detector pitch and fill factor. The points are FDTD results, and the mesh surface is a numerical approximation from Eq.  (2).

Tables (1)

Tables Icon

Table 1 Variation of Integrated Absorption (814 μm) with Incident Angle for a 15μm pixel with 20μm Pitcha

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g300 KLWIR=8 μm14 μmgλU300 Kλdλ/8 μm14 μmU300 Kλdλ,
g300KLWIR=0.957-1.50F+26.101/δ+4.36F2-39.501/δ2-47.58F/δ-2.883F3+216.31/δ3-4.414F/δ2+23.94F2/δ,

Metrics