Abstract

The reflectivity of extreme-ultraviolet thin-film multilayer (ML) interference coatings, terminated by a native oxide or other capping layer (CL), is critically dependent on the thickness of the final deposited layer of the top period. We show in this numerical study that, for a molybdenum–silicon ML, a high reflectivity loss may be incurred if the final Si layer is not of optimum thickness. For maximum reflectivity the thickness of the final Si layer must be controlled such that the node of the standing wave lies within the absorptive CL. The final Si layer may be replaced, at the expense of reflectivity, by SiC and capped with another inert material for improved protection of the ML.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998).
    [CrossRef]
  2. E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
    [CrossRef]
  3. P. B. Mirkarimi, S. Bajt, and M. A. Wall, Appl. Opt. 39, 1617 (2000).
    [CrossRef]
  4. M. Singh and J. J. M. Braat, Appl. Opt. 39, 2189 (2000).
    [CrossRef]
  5. M. Singh and J. J. M. Braat, Proc. SPIE 3997, 412 (2000).
    [CrossRef]
  6. E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994), Chap.  8.
    [CrossRef]
  7. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, Bristol, UK, 1986), pp. 11–43.
  8. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993); http://www-cxro.lbl.gov/optical_constants .
    [CrossRef]

2000 (4)

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

P. B. Mirkarimi, S. Bajt, and M. A. Wall, Appl. Opt. 39, 1617 (2000).
[CrossRef]

M. Singh and J. J. M. Braat, Appl. Opt. 39, 2189 (2000).
[CrossRef]

M. Singh and J. J. M. Braat, Proc. SPIE 3997, 412 (2000).
[CrossRef]

1998 (1)

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998).
[CrossRef]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993); http://www-cxro.lbl.gov/optical_constants .
[CrossRef]

Attwood, D.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998).
[CrossRef]

Bajt, S.

Bijkerk, F.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Braat, J. J. M.

M. Singh and J. J. M. Braat, Appl. Opt. 39, 2189 (2000).
[CrossRef]

M. Singh and J. J. M. Braat, Proc. SPIE 3997, 412 (2000).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993); http://www-cxro.lbl.gov/optical_constants .
[CrossRef]

Görts, P. C.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993); http://www-cxro.lbl.gov/optical_constants .
[CrossRef]

Gwyn, C. W.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993); http://www-cxro.lbl.gov/optical_constants .
[CrossRef]

Kessels, M. J. H.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Louis, E.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Maas, E. L. G.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, Bristol, UK, 1986), pp. 11–43.

Mirkarimi, P. B.

Oestreich, S.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Singh, M.

M. Singh and J. J. M. Braat, Proc. SPIE 3997, 412 (2000).
[CrossRef]

M. Singh and J. J. M. Braat, Appl. Opt. 39, 2189 (2000).
[CrossRef]

Spiller, E.

E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994), Chap.  8.
[CrossRef]

Stuik, R.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Stulen, R.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998).
[CrossRef]

Sweeney, D.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998).
[CrossRef]

Wall, M. A.

Yakshin, A. E.

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

Appl. Opt. (2)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993); http://www-cxro.lbl.gov/optical_constants .
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998).
[CrossRef]

Proc. SPIE (2)

E. Louis, A. E. Yakshin, P. C. Görts, S. Oestreich, R. Stuik, E. L. G. Maas, M. J. H. Kessels, and F. Bijkerk, Proc. SPIE 3997, 406 (2000).
[CrossRef]

M. Singh and J. J. M. Braat, Proc. SPIE 3997, 412 (2000).
[CrossRef]

Other (2)

E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994), Chap.  8.
[CrossRef]

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, Bristol, UK, 1986), pp. 11–43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Variation of the reflectivity of a 50-period optimized Mo–Si multilayer relative to Si thicknesses dz for a 2-nm CL’s of the materials shown.

Fig. 2
Fig. 2

Square of the normalized E-field intensity within an optimized Mo–Si ML with a 2-nm SiO2 CL. N1 and N2 are the nodes, and AN shows the antinodes of the standing wave.

Fig. 3
Fig. 3

Reflectivity relative to dz response of a Mo–Si ML with the final Si layer replaced by SiC. The design configurations are A, X=2.7nm Mo, dCL=0; B, X=2.7nm Mo, dCL=2 nm C; C, X=2.7nm Mo, dCL=2nm Rh; D, X=1.3nm Rh, dCL=2nm Rh.

Tables (1)

Tables Icon

Table 1 Optical Constants (n and k), dz, and Rpeak for Selected Capping Layer Materials with Thicknesses of 2, 3, and 4  nm

Metrics