Abstract

We have achieved efficient simultaneous intracavity doubling of the signal frequency and sum-frequency generation between the signal and the pump in a periodically poled LiNbO3 femtosecond optical parametric oscillator pumped by a Ti:sapphire laser. The responsible mechanisms are second-, third-, and fourth-order quasi-phase matching (QPM). An 56% poling duty cycle permits efficient even-order QPM. Femtosecond pulses tunable in the visible were generated with a total efficiency of more than 8% for only 480-mW pump power at 80  MHz. Optimization of the poling duty cycle can improve the efficiency further.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
    [CrossRef] [PubMed]
  2. E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 1967 (1994).
    [CrossRef] [PubMed]
  3. A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
    [CrossRef]
  4. T. Kartaloglu, K. G. Köprülü, and O. Aytür, Opt. Lett. 22, 280 (1997).
    [CrossRef]
  5. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, and W. Sibbett, J. Opt. Soc. Am. B 15, 694 (1998).
    [CrossRef]
  6. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, Opt. Lett. 22, 618 (1996).
    [CrossRef]
  7. K. C. Burr and C. L. Tang, Appl. Phys. Lett. 70, 3341 (1997).
    [CrossRef]
  8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  9. J. Hebling, H. Giessen, S. Linden, and J. Kuhl, Opt. Commun. 141, 229 (1997).
    [CrossRef]

1998 (1)

1997 (3)

K. C. Burr and C. L. Tang, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

T. Kartaloglu, K. G. Köprülü, and O. Aytür, Opt. Lett. 22, 280 (1997).
[CrossRef]

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, Opt. Commun. 141, 229 (1997).
[CrossRef]

1996 (2)

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, Opt. Lett. 22, 618 (1996).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Aytür, O.

Burr, K. C.

K. C. Burr and C. L. Tang, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Butterworth, S. D.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Cheung, E. C.

Ebrahimzadeh, M.

Ellingson, R. J.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Giessen, H.

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, Opt. Commun. 141, 229 (1997).
[CrossRef]

Hanna, D. C.

Hebling, J.

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, Opt. Commun. 141, 229 (1997).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kartaloglu, T.

Kobayashi, T.

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

Koch, K.

Köprülü, K. G.

Kuhl, J.

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, Opt. Commun. 141, 229 (1997).
[CrossRef]

Linden, S.

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, Opt. Commun. 141, 229 (1997).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Mao, H. W.

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

McGowan, C.

Moore, G. T.

Penman, Z. E.

Reid, D. T.

Shirakawa, A.

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

Sibbett, W.

Smith, P. G. R.

Tang, C. L.

K. C. Burr and C. L. Tang, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. C. Burr and C. L. Tang, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

J. Hebling, H. Giessen, S. Linden, and J. Kuhl, Opt. Commun. 141, 229 (1997).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: M1, M3, chirped mirrors; M2 R99%, M4 R>99.9%, high reflectors; C1, C2, spherical mirrors R>99% with 100-mm curvature radius; CL, collimating lens; SP, 45° BK7 prism.

Fig. 2
Fig. 2

Tuning characteristics of (a) SFG and (b) SHG. Insets: output power P and calculated relative conversion efficiency (η, solid lower curve) versus visible wavelength based on the phase-matching conditions and a 56% poling duty cycle (21μm grating period) of PPLN.

Fig. 3
Fig. 3

Intensity autocorrelation measurements (filled squares) of the visible pulses at (a) 486 and (b) 617  nm. Solid curves, Gaussian fits to the experimental data; τp, pulse width.

Fig. 4
Fig. 4

(a) Measurement of the power of the doubled pump PSHG versus the pump wavelength λP: A, 9th-order QPM at 778  nm; B, 8th-order QPM at 809  nm; C, 7th-order QPM at 838  nm. (b) Calculated relative conversion efficiency η versus poling duty cycle of the 7th–9th orders of QPM.

Fig. 5
Fig. 5

Calculated relative conversion efficiency η versus poling duty cycle of the 1st–4th orders of QPM.

Metrics