Abstract

We present what is to our knowledge the first observation of spin-polarized atoms cooled within a reflecting cylinder in a high-power medium. A low-pressure vapor of cesium atoms is stored in a glass cell whose volume is 58 cm3. Cooling laser light λ=852 nm is injected into the cell by optical fibers and is recycled by multiple reflections from the walls of the cylinder. The technique used in this experiment greatly simplifies the generation of laser-cooled atoms. A maximum of 2.5×108 cold atoms was detected by a time-of-flight technique. The damping of atomic motion has lead to temperatures as low as 3.5 μK.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
    [CrossRef] [PubMed]
  2. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
    [CrossRef] [PubMed]
  3. C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
    [CrossRef] [PubMed]
  4. W. Ketterle, A. Martin, M. A. Joffe, and D. E. Pritchard, Phys. Rev. Lett. 69, 2483 (1992).
    [CrossRef] [PubMed]
  5. Spectralon is produced by Labsphere, Inc., North Sutton, N.H.  03260.
  6. L. Moi, Opt. Commun. 50, 349 (1984).
    [CrossRef]
  7. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).
    [CrossRef]
  8. D. W. Sesko and C. E. Wieman, Opt. Lett. 14, 269 (1989).
    [CrossRef] [PubMed]

1992 (1)

W. Ketterle, A. Martin, M. A. Joffe, and D. E. Pritchard, Phys. Rev. Lett. 69, 2483 (1992).
[CrossRef] [PubMed]

1990 (1)

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

1989 (2)

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

1985 (1)

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

1984 (1)

L. Moi, Opt. Commun. 50, 349 (1984).
[CrossRef]

Ashkin, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Bjorkholm, J. E.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Cohen-Tannoudji, C.

Dalibard, J.

Hollberg, L.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Joffe, M. A.

W. Ketterle, A. Martin, M. A. Joffe, and D. E. Pritchard, Phys. Rev. Lett. 69, 2483 (1992).
[CrossRef] [PubMed]

Ketterle, W.

W. Ketterle, A. Martin, M. A. Joffe, and D. E. Pritchard, Phys. Rev. Lett. 69, 2483 (1992).
[CrossRef] [PubMed]

Martin, A.

W. Ketterle, A. Martin, M. A. Joffe, and D. E. Pritchard, Phys. Rev. Lett. 69, 2483 (1992).
[CrossRef] [PubMed]

Moi, L.

L. Moi, Opt. Commun. 50, 349 (1984).
[CrossRef]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

W. Ketterle, A. Martin, M. A. Joffe, and D. E. Pritchard, Phys. Rev. Lett. 69, 2483 (1992).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Sesko, D. W.

Swann, W.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Wieman, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Wieman, C. E.

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Moi, Opt. Commun. 50, 349 (1984).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (4)

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

W. Ketterle, A. Martin, M. A. Joffe, and D. E. Pritchard, Phys. Rev. Lett. 69, 2483 (1992).
[CrossRef] [PubMed]

Other (1)

Spectralon is produced by Labsphere, Inc., North Sutton, N.H.  03260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polished copper reflecting cylinder used for optically cooling cesium atoms. It surrounds a spherical glass cell that stores the cesium atoms and has an axis of symmetry along 0x. Cooling light is injected by four multimode optical fibers into the median plane of the cylinder, parallel to 0yz, and reflects on the inner walls of the cylinder. A magnetic shield protects cooling and detection zones.

Fig. 2
Fig. 2

Observation of the cold atoms in the storage cell. (a) Cooling light switched off: the Doppler effect broadens the hyperfine transitions of cesium atoms. (b) Cooling light switched on: the atoms are cooled and the hyperfine peaks are resolved.

Fig. 3
Fig. 3

TOF. The solid curve shows a typical signal for an injected power of 50  mW and a detuning of -1.6 Γ. The circles represent a Gaussian fit of the experimental data.

Fig. 4
Fig. 4

Temperature (black squares), number of detected atoms, and optical molasses diameter versus Π.

Metrics