Abstract

We report the first demonstration to our knowledge of 220-ps visible laser generation from passively Q-switched-laser pumped periodically poled lithium niobate (PPLN) in a single-pass, cascaded frequency-conversion process. The monolithic PPLN consists of a 1-cm section for frequency doubling the 1064-nm Nd:YAG pump laser to a 532-nm laser and a subsequent 4-cm section for generating the visible laser in a 532-nm-pumped optical parametric generation (OPG) process. In generating the 622.3-nm OPG signal wavelength we measured a 3.0μJ/pulse pump threshold at the 1064-nm wavelength, 16% overall efficiency, and 35% slope efficiency at two times threshold. At 10-6 pump duty cycle and 20-mW average power in the visible, photorefractive damage was not observed at the phase-matching temperature of 40.3 °C.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Trash and L. F. Johnson, in Compact Blue/Green Lasers, Vol. 6 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper ThB3.
  2. T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
    [CrossRef]
  3. H. Scheife, T. Sandrock, E. Heumann, T. Danger, and G. Huber, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 79–82.
  4. J. J. Zayhowski, in Miniature Coherent Light Sources in Dielectric Media, D. C. Hanna and B. Jacqier, eds. (Elsevier, Amsterdam, 1997), pp. 255–267.
  5. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  6. J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
    [CrossRef] [PubMed]
  7. U. Bader, J.-P. Meyn, J. Bartschke, T. Weber, A. Borsutzky, R. Wallenstein, R. G. Batchko, M. M. Fejer, and R. L. Byer, Opt. Lett. 24, 1608 (1999).
    [CrossRef]
  8. D. J. Jundt, Opt. Lett. 22, 1553 (1999).
    [CrossRef]
  9. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 771–773.

1999 (2)

1997 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1991 (1)

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Bader, U.

Bartschke, J.

Batchko, R. G.

Borsutzky, A.

Brierley, M. C.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Byer, R. L.

Danger, T.

H. Scheife, T. Sandrock, E. Heumann, T. Danger, and G. Huber, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 79–82.

Fejer, M. M.

Heumann, E.

H. Scheife, T. Sandrock, E. Heumann, T. Danger, and G. Huber, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 79–82.

Huber, G.

H. Scheife, T. Sandrock, E. Heumann, T. Danger, and G. Huber, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 79–82.

Johnson, L. F.

R. J. Trash and L. F. Johnson, in Compact Blue/Green Lasers, Vol. 6 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper ThB3.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Jundt, D. J.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Meyn, J.-P.

Millar, C. A.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 771–773.

Sandrock, T.

H. Scheife, T. Sandrock, E. Heumann, T. Danger, and G. Huber, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 79–82.

Scheife, H.

H. Scheife, T. Sandrock, E. Heumann, T. Danger, and G. Huber, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 79–82.

Szebesta, D.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 771–773.

Trash, R. J.

R. J. Trash and L. F. Johnson, in Compact Blue/Green Lasers, Vol. 6 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper ThB3.

Wallenstein, R.

Weber, T.

Whitley, T. J.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Wyatt, R.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
[CrossRef] [PubMed]

J. J. Zayhowski, in Miniature Coherent Light Sources in Dielectric Media, D. C. Hanna and B. Jacqier, eds. (Elsevier, Amsterdam, 1997), pp. 255–267.

Electron. Lett. (1)

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Opt. Lett. (3)

Other (4)

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 771–773.

H. Scheife, T. Sandrock, E. Heumann, T. Danger, and G. Huber, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 79–82.

J. J. Zayhowski, in Miniature Coherent Light Sources in Dielectric Media, D. C. Hanna and B. Jacqier, eds. (Elsevier, Amsterdam, 1997), pp. 255–267.

R. J. Trash and L. F. Johnson, in Compact Blue/Green Lasers, Vol. 6 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper ThB3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup of the SHG–OPG cascaded QPM experiment. A passively Q-switched Nd:YAG laser pumps the first SHG PPLN section to generate a 532-nm laser, which in turn pumps the subsequent OPG section to generate visible signal lasers. The 45° high reflector (HR), made from a BK7 glass substrate, removes the 1064-nm and the infrared OPG idler energies. The long-pass filter (LP), with a cutoff wavelength at 550  nm, removes the 532-nm laser.

Fig. 2
Fig. 2

(a) 1064-nm pump pulse (FWHM, 730 ps) and the depleted 1064-nm pump pulse, (b) 532-nm SHG pulse (FWHM, 510 ps) and the depleted 532-nm pulse, (c) 622.3-nm visible OPG signal pulse (FWHM, 220 ps). The vertical axes are scaled to the internal laser powers in the PPLN, where a 6.54μJ/pulse internal pump energy at the 1064-nm wavelength is fixed for all plots.

Fig. 3
Fig. 3

Calculated (solid curve) and measured (open circles) OPG visible wavelengths. The 1nm wavelength discrepancy in the vertical axis is likely attributable to 0.04μm uncertainty in the PPLN grating period.

Fig. 4
Fig. 4

Measured OPG signal energy versus 1064-nm pump energy for the five OPG grating periods. As the grating period becomes increasingly longer, the OPG idler wavelength moves into the absorption region of the PPLN, and the OPG signal energy is reduced. For the 11μm grating period, the 1064- to 622.3-nm laser conversion efficiency is 16.5%, and its slope efficiency is 35%.

Metrics