Abstract

The refractive-index distribution that is intrinsic to the silicon-on-insulator (SOI) material system makes it possible for optical-frequency guided waves to be confined by the SOI silicon layer. The same refractive-index distribution is unusual among nonmetals in that it is possible for those SOI guided waves to interact strongly with nearby optical-frequency radiators, absorbers, and scatterers (e.g., atoms, molecules, and nanoparticles). We calculate the guided-mode excitation efficiency for an exterior particle near the SOI surface and show that it can attain values greater than 80% under appropriate conditions, thus showing that the SOI waveguide system is an attractive platform for the study of optical-frequency surface interactions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, the issue on silicon-on-insulator technology (seven papers), MRS Bull. 23, 13–40 (1998).
    [CrossRef]
  2. See, for example, L. Geppert, IEEE Spectrum 36, 52 (1999).
    [CrossRef]
  3. See also the announcements and SOI-related material posted on these Web pages:  www.chips.ibm.com/news/soi.html and www.eet.com/news/98/1020news/soi.html .
  4. K. Drexhage, in Progress in Optics, E. Wolt, ed. (North-Holland, Amsterdam, 1974), Vol. 12 pp. 163–232.
    [CrossRef]
  5. W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
    [CrossRef]
  6. H. Morawitz, Phys. Rev. 187, 1792 (1969).
    [CrossRef]
  7. J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984).
    [CrossRef]
  8. W. H. Weber and C. F. Eagen, Opt. Lett. 4, 236 (1979).
    [CrossRef]
  9. B. N. Kurdi and D. G. Hall, Opt. Lett. 13, 175 (1988).
    [CrossRef]
  10. R. M. Emmons, B. N. Kurdi, and D. G. Hall, IEEE J. Quantum Electron. 28, 157 (1992).
    [CrossRef]
  11. G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).
    [CrossRef]
  12. See, for example, W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990), p. 66.
  13. The number of waveguide modes that each structure supports increases at discrete values of the product n1hΔ1/2/λ; hence the stepwise behavior in Fig.  4.
  14. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
    [CrossRef]
  15. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).
    [CrossRef]
  16. H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
    [CrossRef]
  17. C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
    [CrossRef]
  18. Biosensors that make use of the surface plasmon field at a metal–dielectric interface are already receiving a great deal of attention. See, for example , J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B 54, 3 (1999).
    [CrossRef]

1999 (3)

See, for example, L. Geppert, IEEE Spectrum 36, 52 (1999).
[CrossRef]

C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[CrossRef]

Biosensors that make use of the surface plasmon field at a metal–dielectric interface are already receiving a great deal of attention. See, for example , J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B 54, 3 (1999).
[CrossRef]

1998 (3)

See, for example, the issue on silicon-on-insulator technology (seven papers), MRS Bull. 23, 13–40 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

1996 (1)

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

1992 (1)

R. M. Emmons, B. N. Kurdi, and D. G. Hall, IEEE J. Quantum Electron. 28, 157 (1992).
[CrossRef]

1988 (1)

1984 (3)

G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).
[CrossRef]

J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984).
[CrossRef]

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

1979 (1)

1969 (1)

H. Morawitz, Phys. Rev. 187, 1792 (1969).
[CrossRef]

Campbell, J. C.

C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[CrossRef]

Chew, W. C.

See, for example, W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990), p. 66.

Drexhage, K.

K. Drexhage, in Progress in Optics, E. Wolt, ed. (North-Holland, Amsterdam, 1974), Vol. 12 pp. 163–232.
[CrossRef]

Eagen, C. F.

Emmons, R. M.

R. M. Emmons, B. N. Kurdi, and D. G. Hall, IEEE J. Quantum Electron. 28, 157 (1992).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).
[CrossRef]

Gauglitz, G.

Biosensors that make use of the surface plasmon field at a metal–dielectric interface are already receiving a great deal of attention. See, for example , J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B 54, 3 (1999).
[CrossRef]

Geppert, L.

See, for example, L. Geppert, IEEE Spectrum 36, 52 (1999).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

R. M. Emmons, B. N. Kurdi, and D. G. Hall, IEEE J. Quantum Electron. 28, 157 (1992).
[CrossRef]

B. N. Kurdi and D. G. Hall, Opt. Lett. 13, 175 (1988).
[CrossRef]

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

Holland, W. R.

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

Homola, J.

Biosensors that make use of the surface plasmon field at a metal–dielectric interface are already receiving a great deal of attention. See, for example , J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B 54, 3 (1999).
[CrossRef]

Kurdi, B. N.

R. M. Emmons, B. N. Kurdi, and D. G. Hall, IEEE J. Quantum Electron. 28, 157 (1992).
[CrossRef]

B. N. Kurdi and D. G. Hall, Opt. Lett. 13, 175 (1988).
[CrossRef]

Li, R.

C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[CrossRef]

Morawitz, H.

H. Morawitz, Phys. Rev. 187, 1792 (1969).
[CrossRef]

Schaub, J. D.

C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[CrossRef]

Schow, C. L.

C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[CrossRef]

Sipe, J. E.

J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).
[CrossRef]

W. H. Weber and C. F. Eagen, Opt. Lett. 4, 236 (1979).
[CrossRef]

Wylie, J. M.

J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984).
[CrossRef]

Yee, S. S.

Biosensors that make use of the surface plasmon field at a metal–dielectric interface are already receiving a great deal of attention. See, for example , J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B 54, 3 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[CrossRef]

R. M. Emmons, B. N. Kurdi, and D. G. Hall, IEEE J. Quantum Electron. 28, 157 (1992).
[CrossRef]

IEEE Spectrum (1)

See, for example, L. Geppert, IEEE Spectrum 36, 52 (1999).
[CrossRef]

MRS Bull. (1)

See, for example, the issue on silicon-on-insulator technology (seven papers), MRS Bull. 23, 13–40 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).
[CrossRef]

Phys. Rev. (1)

H. Morawitz, Phys. Rev. 187, 1792 (1969).
[CrossRef]

Phys. Rev. A (1)

J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984).
[CrossRef]

Phys. Rev. Lett. (2)

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
[CrossRef]

Sensors Actuators B (1)

Biosensors that make use of the surface plasmon field at a metal–dielectric interface are already receiving a great deal of attention. See, for example , J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B 54, 3 (1999).
[CrossRef]

Other (4)

See also the announcements and SOI-related material posted on these Web pages:  www.chips.ibm.com/news/soi.html and www.eet.com/news/98/1020news/soi.html .

K. Drexhage, in Progress in Optics, E. Wolt, ed. (North-Holland, Amsterdam, 1974), Vol. 12 pp. 163–232.
[CrossRef]

See, for example, W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990), p. 66.

The number of waveguide modes that each structure supports increases at discrete values of the product n1hΔ1/2/λ; hence the stepwise behavior in Fig.  4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electric dipole separated by a thin spacer of thickness d from a SOI structure with indices of refraction at λ=850 nm. In a cylindrical coordinate system, ρ,ϕ, and x, the x axis is normal to the layers, as shown, and the ρϕ plane is parallel to those layers.

Fig. 2
Fig. 2

Calculated power spectrum Su for wavelengths λ=730 and λ=830 nm for a horizontal electric dipole placed above an SOI structure, with u=kρ/ω/c=1-kx2/ω/c21/2 the normalized wave number. TE0, TE1, and TM0 designate the excitation of TE and TM optical waveguide modes.

Fig. 3
Fig. 3

Fraction of the total power radiated by a horizontal electric dipole into the optical waveguide modes of a 167-nm-thick SOI silicon guiding layer as a function of wavelength.

Fig. 4
Fig. 4

Fraction of the total power radiated into optical waveguide modes by a horizontal electric dipole, radiating in the near IR λ=800 nm, placed 30  nm above the waveguides listed in the inset as a function of index contrast parameter Δ=n1-n2/n2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SHEDu Im(iu1-u21-u2×1-rpexp2ikxd+1+rsexp2ikxd).

Metrics