Abstract

We describe an optical processing method for characterizing tissue pathology that is based on principal-component analysis of light-induced autofluorescence. A set of optical spectral filters, which are related to the principal-component loading vectors, is designed to process the autofluorescence signal optically and to generate principal-component scores from the autofluorescence spectra. The scores are then correlated with the tissue pathology. An optical processing system is designed that uses the in vivo fluorescence spectra recorded from nasopharyngeal tissues. We demonstrate that the system can differentiate nasopharyngeal carcinoma from normal tissue with a high degree of sensitivity and specificity and that the optical filters used in the system can be manufactured.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis

Jianan Y. Qu, Hanpeng Chang, and Shengming Xiong
J. Opt. Soc. Am. A 19(9) 1823-1831 (2002)

In-vivo NIR autofluorescence imaging of rat mammary tumors

Laure S. Fournier, Vincenzo Lucidi, Kirill Berejnoi, Theodore Miller, Stavros G. Demos, and Robert C. Brasch
Opt. Express 14(15) 6713-6723 (2006)

Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy

Melissa C. Skala, Gregory M. Palmer, Kristin M. Vrotsos, Annette Gendron-Fitzpatrick, and Nirmala Ramanujam
Opt. Express 15(12) 7863-7875 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription