Abstract

We have fabricated bandpass filters based on π-shifted long-period gratings for application in actively mode-locked erbium fiber lasers. Introducing the π-phase shift in the middle of the grating opens a bandpass within the core–cladding mode resonance peaks. With a 22-nm bandwidth filter inserted in an actively mode-locked erbium fiber sigma laser, solitonlike pulses are generated, with a power-dependent duration of 35 ps, at a 3-GHz repetition rate. These all-fiber filters have the advantages of low insertion loss <0.5 dB and a wide bandwidth (10–20  nm), and they do not require that a circulator be inserted into the laser cavity.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
    [CrossRef]
  3. S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, and R. P. Salathé, Opt. Lett. 21, 1830 (1996).
    [CrossRef] [PubMed]
  4. R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Opt. Lett. 24, 1029 (1999).
    [CrossRef]
  5. T. F. Carruthers, I. N. Duling, and M. L. Dennis, Electron. Lett. 30, 1051 (1994).
    [CrossRef]
  6. P. Franco, M. Midrio, A. Tozzato, M. Romagnoli, and F. Fontana, J. Opt. Soc. Am. B 11, 1090 (1994).
    [CrossRef]
  7. D. U. Noske, N. Pandit, and J. R. Taylor, Opt. Lett. 17, 1515 (1992).
    [CrossRef]
  8. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
    [CrossRef]

1999

1998

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

1996

S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, and R. P. Salathé, Opt. Lett. 21, 1830 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

1994

T. F. Carruthers, I. N. Duling, and M. L. Dennis, Electron. Lett. 30, 1051 (1994).
[CrossRef]

P. Franco, M. Midrio, A. Tozzato, M. Romagnoli, and F. Fontana, J. Opt. Soc. Am. B 11, 1090 (1994).
[CrossRef]

1992

1970

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Blondel, M.

Carruthers, T. F.

T. F. Carruthers, I. N. Duling, and M. L. Dennis, Electron. Lett. 30, 1051 (1994).
[CrossRef]

Dennis, M. L.

T. F. Carruthers, I. N. Duling, and M. L. Dennis, Electron. Lett. 30, 1051 (1994).
[CrossRef]

Deparis, O.

Dianov, E. M.

Duling, I. N.

T. F. Carruthers, I. N. Duling, and M. L. Dennis, Electron. Lett. 30, 1051 (1994).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Feinberg, J.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

Fontana, F.

Franco, P.

Grubsky, V.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kiyan, R.

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Limberger, H. G.

Mégret, P.

Midrio, M.

Noske, D. U.

Pandit, N.

Pottiez, O.

Romagnoli, M.

Salathé, R. P.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Starodubov, D. S.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

Taylor, J. R.

Tozzato, A.

Varelas, D.

Vasiliev, S. A.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Electron. Lett.

T. F. Carruthers, I. N. Duling, and M. L. Dennis, Electron. Lett. 30, 1051 (1994).
[CrossRef]

IEEE J. Lightwave Technol.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, IEEE J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

IEEE J. Quantum Electron.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

IEEE Photon. Technol. Lett.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectra of PS-LPGs 1 (top) and 2 (bottom). Note the bandpass in each core–cladding-mode resonance peak, resulting from the π-phase shift introduced in the middle of the LPG.

Fig. 2
Fig. 2

Transmission spectra of PS-LPGs 1 (dashed–dotted curve) and 2 (dotted curve) and their serial combination 12 (solid curve), measured near the wavelength of interest (1550  nm).

Fig. 3
Fig. 3

Optical spectra (top) and autocorrelation traces (bottom) of mode-locked pulses, measured at increasing average intracavity power. a, Pcav=3.55 mW, b, Pcav=9.70 mW, and c, Pcav=15.65 mW. The transmission spectrum of PS-LPG filter 1 that is used in the laser cavity is shown by the dotted curve. SHG, second-harmonic generation.

Fig. 4
Fig. 4

Optical spectra (top) and autocorrelation traces (bottom) of mode-locked pulses, measured at increasing average intracavity power. a, Pcav=4.50 mW, b, Pcav=10.25 mW, and c, Pcav=12.55 mW. The transmission spectrum of PS-LPG filter 12 that is used in the laser cavity is shown by the dotted curve. SHG, second-harmonic generation.

Metrics