Abstract

We report what we believe to be the first experimental demonstration of nondegenerate four-wave mixing in a microstructure fiber. The effect of the χ3 nonlinearity is enhanced in such a fiber because of the small core area, and we achieve phase matching by operating near the zero-dispersion wavelength 750 nm. We have observed parametric gains of more than 13  dB in 6.1-m-long fiber with a pump peak power of only 6  W. We compare our experimental gain results with those predicted by theory and explore the effects of Raman shift and (or) amplification and cascaded nonlinear mixing.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, Opt. Lett. 24, 1395 (1999).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  5. W. Washio, K. Inoue, and S. Kishida, Electron. Lett. 16, 658 (1980).
    [CrossRef]
  6. D. K. Serkland and P. Kumar, Opt. Lett. 24, 92 (1999).
    [CrossRef]
  7. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
    [CrossRef] [PubMed]
  8. J. Zhang, Q. Li, W. Pan, S. Y. Luo, and Y. L. Chen, Opt. Lett. 26, 214 (2001).
    [CrossRef]
  9. Y. Su, L. Wang, A. Agarwal, and P. Kumar, Opt. Commun. 184, 151 (2000).
    [CrossRef]
  10. J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 367 (2001).
    [CrossRef]
  11. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  12. R. H. Stolen and G. D. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
    [CrossRef]
  13. K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773 (2000).
    [CrossRef]

2001 (2)

2000 (3)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Opt. Commun. 184, 151 (2000).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

1999 (2)

1996 (1)

1995 (1)

1982 (1)

R. H. Stolen and G. D. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

1980 (1)

W. Washio, K. Inoue, and S. Kishida, Electron. Lett. 16, 658 (1980).
[CrossRef]

Agarwal, A.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Opt. Commun. 184, 151 (2000).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Atkin, D. M.

Bennett, P. J.

Birks, T. A.

Bjorkholm, G. D.

R. H. Stolen and G. D. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
[CrossRef]

Broderick, N. G. R.

Chen, Y. L.

Ekert, A.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
[CrossRef]

Fiorentino, M.

Harvey, J. D.

Inoue, K.

W. Washio, K. Inoue, and S. Kishida, Electron. Lett. 16, 658 (1980).
[CrossRef]

Kishida, S.

W. Washio, K. Inoue, and S. Kishida, Electron. Lett. 16, 658 (1980).
[CrossRef]

Knight, J. C.

Kubota, H.

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773 (2000).
[CrossRef]

Kumar, P.

Leonhardt, R.

Li, Q.

Luo, S. Y.

Monro, T. M.

Murdoch, S. G.

Nakazawa, M.

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773 (2000).
[CrossRef]

Pan, W.

Ranka, J. K.

Richardson, D. J.

Serkland, D. K.

Sharping, J. E.

St. J. Russell, P.

Stentz, A. J.

Stolen, R. H.

R. H. Stolen and G. D. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Su, Y.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Opt. Commun. 184, 151 (2000).
[CrossRef]

Tamura, K. R.

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773 (2000).
[CrossRef]

Wang, L.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Opt. Commun. 184, 151 (2000).
[CrossRef]

Washio, W.

W. Washio, K. Inoue, and S. Kishida, Electron. Lett. 16, 658 (1980).
[CrossRef]

Windeler, R. S.

Zeilinger, A.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
[CrossRef]

Zhang, J.

Electron. Lett. (1)

W. Washio, K. Inoue, and S. Kishida, Electron. Lett. 16, 658 (1980).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. H. Stolen and G. D. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773 (2000).
[CrossRef]

Opt. Commun. (1)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Opt. Commun. 184, 151 (2000).
[CrossRef]

Opt. Lett. (7)

Other (2)

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup used to investigate FWM in MFs. L1–L3, lenses; M1–M4, mirrors; A, attenuator; FPC1, FPC2, fiber polarization controllers; PBS, polarization beam splitter; λ/2, half-wave plate.

Fig. 2
Fig. 2

Typical FWM spectrum observed at the output of the MF. The inset sows a spectrum in which higher-order cascaded mixing is evident.

Fig. 3
Fig. 3

Plots of FWM gain versus peak pump power for several different pump wavelengths. The diamonds represent experimental data, and the curves are fits to Eqs.  (1) and (2).

Fig. 4
Fig. 4

Plot of the GVD coefficient, D, as a function of wavelength, showing λ0 of the MF under test. The error bars represent a 95% confidence interval for D, resulting from the fits shown in Fig.  3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A1z=-α2A1+iγA12A1,
A23z=-α2A23+iγ2A12A23+A12A33*expiΔkz.
κ=2γP1+Δk2γP1+βω2-ω12=0,

Metrics