Abstract

Little information exists regarding how large-mode holey fibers compare, in practical terms, with their conventional counterparts. We present what is to our knowledge the first experimental study of mode area and bend loss for a range of large-mode holey and conventional fibers. It is demonstrated here that large-mode holey fibers exhibit mode areas and bending losses that are comparable to those of conventional fibers at 1.55 μm. However, the novel wavelength dependence of the numerical aperture in a holey fiber offers a significant advantage for broadband and short-wavelength applications in which single-mode operation is required.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
    [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  3. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 6, 674–676 (1999).
    [CrossRef]
  4. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), Section 2.3.1.
  5. N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
    [CrossRef]
  6. M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
    [CrossRef]
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [CrossRef]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Section 12-10 .

1999 (3)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 6, 674–676 (1999).
[CrossRef]

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
[CrossRef]

1997 (1)

1989 (1)

M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), Section 2.3.1.

Artilia, M.

M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[CrossRef]

Bennett, P. J.

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 6, 674–676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Broderick, N. G. R.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

Caplen, J.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

Coppa, G.

M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[CrossRef]

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
[CrossRef]

de Sandro, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
[CrossRef]

Di Vita, P.

M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[CrossRef]

Dong, L.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 6, 674–676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Section 12-10 .

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 6, 674–676 (1999).
[CrossRef]

Monro, T. M.

Offerhaus, H. L.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

Potenza, M.

M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[CrossRef]

Richardson, D. J.

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

Sammut, R. A.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

Sharma, A.

M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Section 12-10 .

St. J. Russell, P.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 6, 674–676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1346–1347 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 6, 674–676 (1999).
[CrossRef]

J. Lightwave Technol. (2)

M. Artilia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

J. Opt. Fiber Technol. (1)

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” J. Opt. Fiber Technol. 5, 185–197 (1999).
[CrossRef]

Opt. Lett. (1)

Other (2)

G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), Section 2.3.1.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Section 12-10 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Predicted fundamental mode area at 1.53 μm as a function of d and Λ for a hexagonal hole arrangement. The contours show the mode area in micrometers squared.

Fig. 2
Fig. 2

Mode area versus wavelength for a selection of large-mode HFs and conventional fibers. Inset, predicted (curve) and experimental (filled circles) values for HF H2.

Fig. 3
Fig. 3

Transmitted power as a function of bend radius for a selection of HFs and conventional fibers at 1.55 μm.

Tables (1)

Tables Icon

Table 1 Results for Fundamental Mode Area (Aeff) and Number of Modes (M) for a Selection of HFs (H) and Conventional (S) and Calculated (E) Step-Index Fibers

Metrics