Abstract

We report efficient quasi-optic coupling of a freely propagating beam of terahertz (THz) pulses into a parallel-plate copper waveguide (with a plate separation of 108 μm) and subsequent low-loss, single-TEM-mode propagation with virtually no group-velocity dispersion. Undistorted, low-loss propagation of the incoming 0.3-ps FWHM THz pulses was observed within the bandwidth from 0.1 to 4  THz for a length of 24.4  mm. We compare experimentally derived values for the absorption and phase velocity with theory to show consistency. This demonstration is direct proof of the excellent performance of the parallel-plate waveguide as a wideband THz interconnect.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. McGowan, G. Gallot, and D. Grischkowsky, Opt. Lett. 24, 1431 (1999).
    [CrossRef]
  2. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
    [CrossRef]
  3. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
    [CrossRef]
  4. R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449 (2000).
    [CrossRef]
  5. D. Grischkowsky, IEEE J. Sel. Top. Quantum Electron. 6, 1122 (2000).
    [CrossRef]
  6. N. Marcuvitz, Waveguide Handbook (Peregrinus, London, 1993), Chap.  2, p. 64.
  7. M. O’Donnell, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 69, 696 (1981).
    [CrossRef]

2000 (4)

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449 (2000).
[CrossRef]

D. Grischkowsky, IEEE J. Sel. Top. Quantum Electron. 6, 1122 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
[CrossRef]

1999 (1)

1981 (1)

M. O’Donnell, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 69, 696 (1981).
[CrossRef]

Gallot, G.

Grischkowsky, D.

R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449 (2000).
[CrossRef]

D. Grischkowsky, IEEE J. Sel. Top. Quantum Electron. 6, 1122 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, Opt. Lett. 24, 1431 (1999).
[CrossRef]

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
[CrossRef]

Jaynes, E. T.

M. O’Donnell, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 69, 696 (1981).
[CrossRef]

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook (Peregrinus, London, 1993), Chap.  2, p. 64.

McGowan, R. W.

Mendis, R.

R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449 (2000).
[CrossRef]

Miller, J. G.

M. O’Donnell, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 69, 696 (1981).
[CrossRef]

O’Donnell, M.

M. O’Donnell, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 69, 696 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Grischkowsky, IEEE J. Sel. Top. Quantum Electron. 6, 1122 (2000).
[CrossRef]

J. Acoust. Soc. Am. (1)

M. O’Donnell, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 69, 696 (1981).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (1)

N. Marcuvitz, Waveguide Handbook (Peregrinus, London, 1993), Chap.  2, p. 64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scan of the reference pulse with the confocal lens system shown in the inset. (b), (c) Scans of the propagated pulse through the (b) short and (c) long waveguides with the lens–waveguide–lens systems shown in the insets. The zero reference time is the same for (a)–(c).

Fig. 2
Fig. 2

Comparison of (a) the reference (dashed lines) and propagated pulses and (b) their amplitude spectra. The thin and thick solid curves correspond to the output of the short and long waveguides, respectively.

Fig. 3
Fig. 3

(a) Amplitude absorption constant and (b) phase and group velocity for the first three modes. Cutoff conditions are shown by the dashed vertical lines. (c) Enlarged view of (b) in the vicinity of unity. Experimental values are shown by the filled circles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Eoutω=ErefωTC2exp-jβz-β0Lexp-αL,

Metrics