Abstract

A theoretical model of a new electronically switchable grating design that uses a multilayer structure of an electro-optic (EO) material with an interdigitated-electrode type of array is proposed as an original technique for calculating the induced refractive index. It is shown that asymmetrical distribution of the electric field induces a slanted Bragg grating, which allows the slant angle to be switched electronically among more than two switching states. Parameters of the suggested design are calculated for a number of EO materials. A special case of frequency-based switching is anticipated for some polymer-dispersed liquid-crystal materials.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kulishov, Appl. Opt. 39, 2332 (2000).
    [CrossRef]
  2. M. Kulishov, P. Cheben, X. Daxhelet, and S. Delprat, J. Opt. Soc. Am. B 18, 457 (2001).
    [CrossRef]
  3. M. L. Jepsen and H. J. Gerritsen, Opt. Lett. 21, 1081 (1996).
    [CrossRef] [PubMed]
  4. R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
    [CrossRef]
  5. K.-K. Lee and R. P. Kenan, Appl. Opt. 28, 74 (1989).
    [CrossRef] [PubMed]

2001 (1)

2000 (2)

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

M. Kulishov, Appl. Opt. 39, 2332 (2000).
[CrossRef]

1996 (1)

1989 (1)

Bunning, T. J.

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

Cheben, P.

Daxhelet, X.

Delprat, S.

Gerritsen, H. J.

Jepsen, M. L.

Kenan, R. P.

Kulishov, M.

Lee, K.-K.

Natarajan, L. V.

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

Pogue, R. T.

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

Schmitt, M. G.

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

Siwecki, S. A.

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

Sutherland, R. L.

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

Tondiglia, V. P.

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Spectros. (1)

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, Appl. Spectros. 54, 1 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross section of the SOE multilayer design.

Fig. 2
Fig. 2

Contour plot of the refractive-index distribution for the following parameter set: a/l=0.5, h=1/2, ϵ=l, ϵ11=8.5, ϵ33=2.9, n0=1.6, V0=6 V, h=4 μm, and r13=30 pm/V. The induced refractive index varies: 1.5992n1.6008.

Fig. 3
Fig. 3

Electric-field vector plot inside a single layer for (a), (b) two different layer thicknesses and for (c) different schemes for the potential application: ϵ11=8.5 and ϵ33=5.9; (a) a/l=0.5, (b) h=l/2, and (c) h=l.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ1x,z=-V0n=0Enexpn+1/2k3h/2-z×sinhn+1/2δkhcosn+1/2kx,+z3h/2,
[φ2x,zφ3x,zφ4x,z]=V0×n=0En[sinhn+1/2δkh/2-zsinhn+1/2δkh/2-zsinhn+1/2δk3h/2+z]×cosn+12kx+[sinhn+1/2δk3h/2-zsinhn+1/2δkh/2+zsinhn+1/2δkh/2+z]×cosn+12kx-l2,+3h/2zh/2,+h/2z-h/2,-h/2z-3h/2.
n=0En*Hncosn+1/2kx=1,0xa/2,n=0n+1/2En*cosn+1/2kx-Gncosn+1/2kx-l/2=0,a/2xl/2,

Metrics