Abstract

The UV wavelength region is of great interest in absorption spectroscopy, which is employed for chemical analysis, since many organic compounds absorb in only this region. Germanium-doped silica, which is often preferred as the waveguide core material in optical devices for telecommunication, cannot accommodate guidance below 400  nm, owing to the presence of UV-absorbing centers. We show that silicon oxynitride SiOxNy waveguides exhibit very good UV performance. The propagation loss for 24μm-wide SiOxNy waveguides was found to be 1.0 dB/cm in the wavelength range 220–550  nm. The applicability of these waveguides was demonstrated in a biochemical microsystem consisting of multimode buried-channel SiOxNy waveguides that were monolithically integrated with microfluidic channels. Absorption measurements of a β-blocking agent, propranolol, at 212–215  nm were performed. The detection limit was reached at a concentration of 13 μM, with an optical path length of 500 μm (signal/noise ratio, 2).

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Jakeway, A. J. de Mello, and E. L. Russel, Fresenius J. Anal. Chem. 366, 525 (2000).
    [CrossRef]
  2. O. Leistiko and P. F. Jensen, J. Micromech. Microeng. 8, 148 (1998).
    [CrossRef]
  3. J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, Anal. Chem. 72, 1093 (2000).
    [CrossRef] [PubMed]
  4. J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
    [CrossRef]
  5. D. A. Skoog, D. M. West, and F. J. Holler, Fundamental of Analytical Chemistry, 7th ed. (Saunders, Philadelphia, Pa., 1997).
  6. A. V. Amossov and A. O. Rybaltovsky, J. Non-Cryst. Solids 179, 75 (1994).
    [CrossRef]
  7. C. Ance, F. de Chelle, J. P. Ferraton, and G. Leveque, Appl. Phys. Lett. 60, 1399 (1992).
    [CrossRef]
  8. K. E. Mattsson, J. Appl. Phys. 77, 6616 (1995).
    [CrossRef]
  9. R. G. Hunsperger, Integrated Optics: Theory and Technology, Vol. 33 of Springer Series in Optical Sciences (Springer, New York, 1991).
  10. F. Landouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman & Hall, New York, 1996).
  11. F. Bruno, M. del Guidice, R. Recca, and F. Testa, Appl. Opt. 30, 4560 (1991).
    [CrossRef] [PubMed]
  12. T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
    [CrossRef]

2001 (1)

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

2000 (2)

S. C. Jakeway, A. J. de Mello, and E. L. Russel, Fresenius J. Anal. Chem. 366, 525 (2000).
[CrossRef]

J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, Anal. Chem. 72, 1093 (2000).
[CrossRef] [PubMed]

1998 (1)

O. Leistiko and P. F. Jensen, J. Micromech. Microeng. 8, 148 (1998).
[CrossRef]

1997 (1)

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

1995 (1)

K. E. Mattsson, J. Appl. Phys. 77, 6616 (1995).
[CrossRef]

1994 (1)

A. V. Amossov and A. O. Rybaltovsky, J. Non-Cryst. Solids 179, 75 (1994).
[CrossRef]

1992 (1)

C. Ance, F. de Chelle, J. P. Ferraton, and G. Leveque, Appl. Phys. Lett. 60, 1399 (1992).
[CrossRef]

1991 (1)

Aitchison, J. S.

J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, Anal. Chem. 72, 1093 (2000).
[CrossRef] [PubMed]

Amossov, A. V.

A. V. Amossov and A. O. Rybaltovsky, J. Non-Cryst. Solids 179, 75 (1994).
[CrossRef]

Ance, C.

C. Ance, F. de Chelle, J. P. Ferraton, and G. Leveque, Appl. Phys. Lett. 60, 1399 (1992).
[CrossRef]

Benoit, V.

J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, Anal. Chem. 72, 1093 (2000).
[CrossRef] [PubMed]

Bruno, F.

Cooper, J. M.

J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, Anal. Chem. 72, 1093 (2000).
[CrossRef] [PubMed]

de Chelle, F.

C. Ance, F. de Chelle, J. P. Ferraton, and G. Leveque, Appl. Phys. Lett. 60, 1399 (1992).
[CrossRef]

de Mello, A. J.

S. C. Jakeway, A. J. de Mello, and E. L. Russel, Fresenius J. Anal. Chem. 366, 525 (2000).
[CrossRef]

del Guidice, M.

Ferraton, J. P.

C. Ance, F. de Chelle, J. P. Ferraton, and G. Leveque, Appl. Phys. Lett. 60, 1399 (1992).
[CrossRef]

Friis, P.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

Holler, F. J.

D. A. Skoog, D. M. West, and F. J. Holler, Fundamental of Analytical Chemistry, 7th ed. (Saunders, Philadelphia, Pa., 1997).

Hübner, J.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology, Vol. 33 of Springer Series in Optical Sciences (Springer, New York, 1991).

Jakeway, S. C.

S. C. Jakeway, A. J. de Mello, and E. L. Russel, Fresenius J. Anal. Chem. 366, 525 (2000).
[CrossRef]

Jensen, P. F.

O. Leistiko and P. F. Jensen, J. Micromech. Microeng. 8, 148 (1998).
[CrossRef]

Jørgensen, A. M.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

Kutter, J. P.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

Landouceur, F.

F. Landouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman & Hall, New York, 1996).

Leistiko, O.

O. Leistiko and P. F. Jensen, J. Micromech. Microeng. 8, 148 (1998).
[CrossRef]

Leveque, G.

C. Ance, F. de Chelle, J. P. Ferraton, and G. Leveque, Appl. Phys. Lett. 60, 1399 (1992).
[CrossRef]

Love, J. D.

F. Landouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman & Hall, New York, 1996).

Mattsson, K. E.

K. E. Mattsson, J. Appl. Phys. 77, 6616 (1995).
[CrossRef]

Mogensen, K. B.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

Muramatsu, S.

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

Nagata, Y.

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

Ohtsuka, H.

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

Recca, R.

Ruano, J. M.

J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, Anal. Chem. 72, 1093 (2000).
[CrossRef] [PubMed]

Russel, E. L.

S. C. Jakeway, A. J. de Mello, and E. L. Russel, Fresenius J. Anal. Chem. 366, 525 (2000).
[CrossRef]

Rybaltovsky, A. O.

A. V. Amossov and A. O. Rybaltovsky, J. Non-Cryst. Solids 179, 75 (1994).
[CrossRef]

Sakamoto, M.

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

Skoog, D. A.

D. A. Skoog, D. M. West, and F. J. Holler, Fundamental of Analytical Chemistry, 7th ed. (Saunders, Philadelphia, Pa., 1997).

Telleman, P.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

Testa, F.

Tsutsui, K.

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

Uematsu, T.

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

Warabisako, T.

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

West, D. M.

D. A. Skoog, D. M. West, and F. J. Holler, Fundamental of Analytical Chemistry, 7th ed. (Saunders, Philadelphia, Pa., 1997).

Anal. Chem. (1)

J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, Anal. Chem. 72, 1093 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Ance, F. de Chelle, J. P. Ferraton, and G. Leveque, Appl. Phys. Lett. 60, 1399 (1992).
[CrossRef]

Fresenius J. Anal. Chem. (1)

S. C. Jakeway, A. J. de Mello, and E. L. Russel, Fresenius J. Anal. Chem. 366, 525 (2000).
[CrossRef]

J. Appl. Phys. (1)

K. E. Mattsson, J. Appl. Phys. 77, 6616 (1995).
[CrossRef]

J. Micromech. Microeng. (1)

O. Leistiko and P. F. Jensen, J. Micromech. Microeng. 8, 148 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

A. V. Amossov and A. O. Rybaltovsky, J. Non-Cryst. Solids 179, 75 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, and J. P. Kutter, Rev. Sci. Instrum. 72, 229 (2001).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

T. Warabisako, T. Uematsu, S. Muramatsu, K. Tsutsui, H. Ohtsuka, Y. Nagata, and M. Sakamoto, Sol. Energy Mater. Sol. Cells 48, 137 (1997).
[CrossRef]

Other (3)

D. A. Skoog, D. M. West, and F. J. Holler, Fundamental of Analytical Chemistry, 7th ed. (Saunders, Philadelphia, Pa., 1997).

R. G. Hunsperger, Integrated Optics: Theory and Technology, Vol. 33 of Springer Series in Optical Sciences (Springer, New York, 1991).

F. Landouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman & Hall, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectrally resolved propagation loss in the wavelength range 200–800  nm. The propagation loss was calculated by the cutback method. The error bars on the linear fits are included every 100  nm. The type A waveguide had a nitrogen-doped core, and type B was germanium doped (see Table  1).

Fig. 2
Fig. 2

Schematic of the simple single-channel setup used for the chemical-absorption measurements.

Fig. 3
Fig. 3

Absorbance versus concentration of propranolol averaged from 212 to 215  nm with a scan time of 400  ms. The lowest detected concentration was 13 μM (signal/noise ratio, 2).

Tables (1)

Tables Icon

Table 1 Glass Composition of the Tested Waveguidesa

Metrics