Abstract

A technique is presented for generating optical frequency combs centered at arbitrary wavelengths by use of cross-phase modulation (XPM) between a femtosecond pulse train and a cw laser beam by copropagating these signals through an optical fiber. We report results from use of this method to place a 90-MHz frequency comb on an iodine-stabilized Nd:YAG laser at 1064 nm and on a frequency-doubled Nd:YVO4 laser at 532 nm. XPM is verified to be the comb-generating process, and the width of the frequency comb is measured and compared with theory. The spacing of the frequency comb is compared with the femtosecond source, and a frequency measurement with this comb is demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
    [CrossRef]
  2. L. R. Brothers, D. Lee, and N. C. Wong, Opt. Lett. 19, 245 (1994).
    [CrossRef] [PubMed]
  3. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).
    [CrossRef]
  4. S. A. Diddams, D. J. Jones, L.-S. Ma, S. T. Cundiff, and J. L. Hall, Opt. Lett. 25, 186 (2000).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  6. M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  7. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett. 24, 881 (1999).
    [CrossRef]
  8. J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
    [CrossRef]
  9. Because of dispersion in the fiber, the pulse will broaden as it propagates, thus changing the duty cycle.
  10. A. Bartels, T. Dekorsy, and H. Kurz, Opt. Lett. 24, 996 (1999).
    [CrossRef]

2000

1999

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett. 24, 881 (1999).
[CrossRef]

A. Bartels, T. Dekorsy, and H. Kurz, Opt. Lett. 24, 996 (1999).
[CrossRef]

1994

1993

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Asaki, M. T.

Bartels, A.

Brothers, L. R.

Cundiff, S. T.

Dekorsy, T.

Diddams, S. A.

Garvey, D.

Hall, J. L.

S. A. Diddams, D. J. Jones, L.-S. Ma, S. T. Cundiff, and J. L. Hall, Opt. Lett. 25, 186 (2000).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Hänsch, T. W.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett. 24, 881 (1999).
[CrossRef]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).
[CrossRef]

Holzwarth, R.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).
[CrossRef]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett. 24, 881 (1999).
[CrossRef]

Hong, F.-L.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Huang, C.-P.

Jones, D. J.

Kapteyn, H. C.

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Kurz, H.

Lee, D.

Ma, L.-S.

S. A. Diddams, D. J. Jones, L.-S. Ma, S. T. Cundiff, and J. L. Hall, Opt. Lett. 25, 186 (2000).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Murnane, M. M.

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Ohtsu, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Pfister, O.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett. 24, 881 (1999).
[CrossRef]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).
[CrossRef]

Taubman, M.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Tiemann, B.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Udem, Th.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).
[CrossRef]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett. 24, 881 (1999).
[CrossRef]

Wong, N. C.

Ye, J.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Zhou, J.

IEEE J. Quantum Electron.

M. Kourogi, K. Nakagawa, and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Because of dispersion in the fiber, the pulse will broaden as it propagates, thus changing the duty cycle.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: SMF, single-mode fiber; Ti:S, Ti:sapphire.

Fig. 2
Fig. 2

Optical frequency domain with probe laser and XPM-generated frequency comb. Ωr, pulse-repetition frequency; δ, detuning between two Nd:YAG lasers.

Fig. 3
Fig. 3

rf spectrum at 1064 nm. The fifth and sixth harmonics of the 90-MHz frequency comb are shown, along with the heterodyne beats (spaced 12 MHz from the harmonics) between the probe Nd:YAG laser and the frequency comb. Inset, direct heterodyne beat between the two Nd:YAG lasers, showing that they are detuned from each other by 12 MHz. The resolution bandwidth is 100 kHz.

Fig. 4
Fig. 4

Results from a numerical simulation of a XPM-generated frequency comb with femtosecond pulses displaying sideband amplitude envelope versus sideband number. The fs pulse trains are approximated with 1000, 2000, 3000, and 4000 harmonics. Also included is an experimental measurement of the sideband amplitude (shown symmetrically about the carrier). Inset, expanded version of the 4000 harmonic expansion, indicating a relative constant comb amplitude over 7000 sidebands.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕmod=2ωn2zcIn=0δt-nT,

Metrics