Abstract

By exploiting the strain-related rollover thresholds that occur between UV-induced positive and negative index regimes in germanosilica glass it is possible to engineer large anisotropy into the structure. This is qualitatively analyzed for a planar waveguide and has been confirmed experimentally. However, the technique described here is not confined to waveguide devices and can in principle be applied to any glass structure that is capable of undergoing strain-sensitive transitions.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Canning and M. Åslund, Opt. Lett. 24, 463 (1999).
    [CrossRef]
  2. J. Canning, in Conference on Lasers and Electro-Optics, Pacific Rim (Optical Society of America, Washington, D.C., 1999), paper WF4.
  3. M. Åslund, J. Canning, and M. Bazylenko, Electron. Lett. 35, 236 (1999).
    [CrossRef]
  4. C. Fiori and R. A. B. Devine, Phys. Rev. Lett. 52, 2081 (1984).
    [CrossRef]
  5. C. Fiori and R. A. B. Devine, Phys. Rev. B 33, 2972 (1986).
    [CrossRef]
  6. J. Canning, D. Moss, M. Åslund, and M. Bazylenko, Opt. Quantum Electron. 31, 469 (1999).
    [CrossRef]
  7. L. B. Glebov, N. V. Nikonorov, and G. T. Petrovskii, Optoelectron. Instrum. Data Process. 5, 34 (1988).

1999 (3)

M. Åslund, J. Canning, and M. Bazylenko, Electron. Lett. 35, 236 (1999).
[CrossRef]

J. Canning, D. Moss, M. Åslund, and M. Bazylenko, Opt. Quantum Electron. 31, 469 (1999).
[CrossRef]

J. Canning and M. Åslund, Opt. Lett. 24, 463 (1999).
[CrossRef]

1988 (1)

L. B. Glebov, N. V. Nikonorov, and G. T. Petrovskii, Optoelectron. Instrum. Data Process. 5, 34 (1988).

1986 (1)

C. Fiori and R. A. B. Devine, Phys. Rev. B 33, 2972 (1986).
[CrossRef]

1984 (1)

C. Fiori and R. A. B. Devine, Phys. Rev. Lett. 52, 2081 (1984).
[CrossRef]

Åslund, M.

J. Canning and M. Åslund, Opt. Lett. 24, 463 (1999).
[CrossRef]

M. Åslund, J. Canning, and M. Bazylenko, Electron. Lett. 35, 236 (1999).
[CrossRef]

J. Canning, D. Moss, M. Åslund, and M. Bazylenko, Opt. Quantum Electron. 31, 469 (1999).
[CrossRef]

Bazylenko, M.

J. Canning, D. Moss, M. Åslund, and M. Bazylenko, Opt. Quantum Electron. 31, 469 (1999).
[CrossRef]

M. Åslund, J. Canning, and M. Bazylenko, Electron. Lett. 35, 236 (1999).
[CrossRef]

Canning, J.

M. Åslund, J. Canning, and M. Bazylenko, Electron. Lett. 35, 236 (1999).
[CrossRef]

J. Canning and M. Åslund, Opt. Lett. 24, 463 (1999).
[CrossRef]

J. Canning, D. Moss, M. Åslund, and M. Bazylenko, Opt. Quantum Electron. 31, 469 (1999).
[CrossRef]

J. Canning, in Conference on Lasers and Electro-Optics, Pacific Rim (Optical Society of America, Washington, D.C., 1999), paper WF4.

Devine, R. A. B.

C. Fiori and R. A. B. Devine, Phys. Rev. B 33, 2972 (1986).
[CrossRef]

C. Fiori and R. A. B. Devine, Phys. Rev. Lett. 52, 2081 (1984).
[CrossRef]

Fiori, C.

C. Fiori and R. A. B. Devine, Phys. Rev. B 33, 2972 (1986).
[CrossRef]

C. Fiori and R. A. B. Devine, Phys. Rev. Lett. 52, 2081 (1984).
[CrossRef]

Glebov, L. B.

L. B. Glebov, N. V. Nikonorov, and G. T. Petrovskii, Optoelectron. Instrum. Data Process. 5, 34 (1988).

Moss, D.

J. Canning, D. Moss, M. Åslund, and M. Bazylenko, Opt. Quantum Electron. 31, 469 (1999).
[CrossRef]

Nikonorov, N. V.

L. B. Glebov, N. V. Nikonorov, and G. T. Petrovskii, Optoelectron. Instrum. Data Process. 5, 34 (1988).

Petrovskii, G. T.

L. B. Glebov, N. V. Nikonorov, and G. T. Petrovskii, Optoelectron. Instrum. Data Process. 5, 34 (1988).

Electron. Lett. (1)

M. Åslund, J. Canning, and M. Bazylenko, Electron. Lett. 35, 236 (1999).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. Canning, D. Moss, M. Åslund, and M. Bazylenko, Opt. Quantum Electron. 31, 469 (1999).
[CrossRef]

Optoelectron. Instrum. Data Process. (1)

L. B. Glebov, N. V. Nikonorov, and G. T. Petrovskii, Optoelectron. Instrum. Data Process. 5, 34 (1988).

Phys. Rev. B (1)

C. Fiori and R. A. B. Devine, Phys. Rev. B 33, 2972 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

C. Fiori and R. A. B. Devine, Phys. Rev. Lett. 52, 2081 (1984).
[CrossRef]

Other (1)

J. Canning, in Conference on Lasers and Electro-Optics, Pacific Rim (Optical Society of America, Washington, D.C., 1999), paper WF4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the method for introducing structural anisotropy into a glass waveguide or sample.

Fig. 2
Fig. 2

Energy diagram of the processes involved in going from untreated to UV-treated glass. PE, potential energy.

Fig. 3
Fig. 3

Theoretical growth profiles for TE and TM modes: solid curve, TM; dotted curve, TE if no type IIa occurs; dashed curve, TE when type IIa occurs for TE only with applied anisotropic stress.

Fig. 4
Fig. 4

Measured growth profiles for TE and TM in an UV-processed Mach–Zehnder interferometer (see Ref. 3).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δn¯+Δn¯max+1-exp-Df, Df=f/fs,
Δn¯--Δn¯max-1-exp-Df, Df=00<f<fthresDf=f-fthres/fsf>fthres,

Metrics