Abstract

We demonstrate a new concept in optical carrier control that uses a simple arrangement based on a hybrid Brillouin–erbium fiber laser. The system offers precise tunable control of the optical carrier amplitude independently of the characteristics of the transmitter or the optical modulation format. As much as 55 dB of carrier attenuation is demonstrated, which to our knowledge is the highest reported attenuation for a carrier-suppression system.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, Electron. Lett. 30, 2157 (1994).
    [CrossRef]
  2. K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
    [CrossRef]
  3. R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
    [CrossRef]
  4. D. S. Glassner, M. Y. Frankel, and R. D. Esman, IEEE Microwave Guided Wave Lett. 7, 57 (1997).
    [CrossRef]
  5. R. Montgomery and R. DeSalvo, IEEE Photon. Technol. Lett. 7, 435 (1995).
    [CrossRef]
  6. M. Y. Frankel and R. D. Esman, J. Lightwave Technol. 16, 859 (1998).
    [CrossRef]
  7. G. J. Cowle and D. Y. Stepanov, Opt. Lett. 21, 1250 (1996).
    [CrossRef] [PubMed]
  8. M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
    [CrossRef]

1998 (1)

1997 (1)

D. S. Glassner, M. Y. Frankel, and R. D. Esman, IEEE Microwave Guided Wave Lett. 7, 57 (1997).
[CrossRef]

1996 (1)

1995 (2)

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

R. Montgomery and R. DeSalvo, IEEE Photon. Technol. Lett. 7, 435 (1995).
[CrossRef]

1994 (3)

M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, Electron. Lett. 30, 2157 (1994).
[CrossRef]

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

Boot, A. J.

M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Charczenko, W.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, Electron. Lett. 30, 2157 (1994).
[CrossRef]

Cowle, G. J.

DeSalvo, R.

R. Montgomery and R. DeSalvo, IEEE Photon. Technol. Lett. 7, 435 (1995).
[CrossRef]

Deventer, M. O.

M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Esman, R. D.

M. Y. Frankel and R. D. Esman, J. Lightwave Technol. 16, 859 (1998).
[CrossRef]

D. S. Glassner, M. Y. Frankel, and R. D. Esman, IEEE Microwave Guided Wave Lett. 7, 57 (1997).
[CrossRef]

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel and R. D. Esman, J. Lightwave Technol. 16, 859 (1998).
[CrossRef]

D. S. Glassner, M. Y. Frankel, and R. D. Esman, IEEE Microwave Guided Wave Lett. 7, 57 (1997).
[CrossRef]

Glassner, D. S.

D. S. Glassner, M. Y. Frankel, and R. D. Esman, IEEE Microwave Guided Wave Lett. 7, 57 (1997).
[CrossRef]

Hamilton, M. C.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, Electron. Lett. 30, 2157 (1994).
[CrossRef]

LaGasse, M. J.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, Electron. Lett. 30, 2157 (1994).
[CrossRef]

Montgomery, R.

R. Montgomery and R. DeSalvo, IEEE Photon. Technol. Lett. 7, 435 (1995).
[CrossRef]

Stepanov, D. Y.

Thaniyavarn, S.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, Electron. Lett. 30, 2157 (1994).
[CrossRef]

Williams, K. J.

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

Electron. Lett. (2)

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, Electron. Lett. 30, 2157 (1994).
[CrossRef]

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

D. S. Glassner, M. Y. Frankel, and R. D. Esman, IEEE Microwave Guided Wave Lett. 7, 57 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Montgomery and R. DeSalvo, IEEE Photon. Technol. Lett. 7, 435 (1995).
[CrossRef]

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

J. Lightwave Technol. (2)

M. Y. Frankel and R. D. Esman, J. Lightwave Technol. 16, 859 (1998).
[CrossRef]

M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the experimental setup: Rx, receiver; ESA, electrical spectrum analyzer.

Fig. 2
Fig. 2

Dependence of carrier, sidebands, and BEFL output power on EDFA pump power. The transmitter’s mean output power was 13 mW, and the modulation depth was 3%. The power level of the carrier and each sideband is given in decibels relative to the power of the original carrier (dBr).

Fig. 3
Fig. 3

Optical spectrum for 100-mW EDFA pump power. The optical spectrum is translated to the electrical domain by heterodyne mixing with a local-oscillator laser.

Fig. 4
Fig. 4

Dependence of the normalized power of the optical carrier and each sideband on the optical modulation depth. The system was adjusted for 43 dB of carrier suppression. For 55% modulation depth the carrier suppression decreases. The power levels are in decibels relative to the original carrier (dBr).

Fig. 5
Fig. 5

Evolution of the frequency response as the carrier is attenuated. Each trace shows greater carrier attenuation than for the trace above it.

Metrics