Abstract

We perform numerical simulations on a model describing a Brillouin-based temperature and strain sensor, testing its response when it is probed with relatively short pulses. Experimental results were recently published [e.g., Opt. Lett. 24, 510 (1999)] that showed a broadening of the Brillouin loss curve when the probe pulse duration is reduced, followed by a sudden and rather surprising reduction of the linewidth when the pulse duration gets shorter than the acoustic relaxation time. Our study reveals the processes responsible for this behavior. We give a clear physical insight into the problem, allowing us to define the best experimental conditions required for one to take the advantage of this effect.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 324.
  2. T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, Proc. SPIE 2507, 126 (1995).
    [CrossRef]
  3. X. Bao, A. Brown, M. DeMerchant, and J. Smith, Opt. Lett. 24, 510 (1999).
    [CrossRef]
  4. C. C. Chow and A. Bers, Phys. Rev. A 47, 5144 (1993).
    [CrossRef] [PubMed]
  5. V. Lecoeuche, S. Randoux, B. Segard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
    [CrossRef] [PubMed]
  6. M. Nikles, L. Thevenaz, and P. Robert, Opt. Lett. 21, 758 (1996).
    [CrossRef]

1999 (1)

1996 (2)

M. Nikles, L. Thevenaz, and P. Robert, Opt. Lett. 21, 758 (1996).
[CrossRef]

V. Lecoeuche, S. Randoux, B. Segard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, Proc. SPIE 2507, 126 (1995).
[CrossRef]

1993 (1)

C. C. Chow and A. Bers, Phys. Rev. A 47, 5144 (1993).
[CrossRef] [PubMed]

Bao, X.

Bers, A.

C. C. Chow and A. Bers, Phys. Rev. A 47, 5144 (1993).
[CrossRef] [PubMed]

Brown, A.

Chow, C. C.

C. C. Chow and A. Bers, Phys. Rev. A 47, 5144 (1993).
[CrossRef] [PubMed]

DeMerchant, M.

Facchini, M.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 324.

Fellay, A.

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 324.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, Proc. SPIE 2507, 126 (1995).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, Proc. SPIE 2507, 126 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, Proc. SPIE 2507, 126 (1995).
[CrossRef]

Lecoeuche, V.

V. Lecoeuche, S. Randoux, B. Segard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Nikles, M.

M. Nikles, L. Thevenaz, and P. Robert, Opt. Lett. 21, 758 (1996).
[CrossRef]

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 324.

Randoux, S.

V. Lecoeuche, S. Randoux, B. Segard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Robert, P.

M. Nikles, L. Thevenaz, and P. Robert, Opt. Lett. 21, 758 (1996).
[CrossRef]

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 324.

Segard, B.

V. Lecoeuche, S. Randoux, B. Segard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, Proc. SPIE 2507, 126 (1995).
[CrossRef]

Smith, J.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. Robert, Opt. Lett. 21, 758 (1996).
[CrossRef]

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 324.

Zemmouri, J.

V. Lecoeuche, S. Randoux, B. Segard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (2)

C. C. Chow and A. Bers, Phys. Rev. A 47, 5144 (1993).
[CrossRef] [PubMed]

V. Lecoeuche, S. Randoux, B. Segard, and J. Zemmouri, Phys. Rev. A 53, 2822 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, Proc. SPIE 2507, 126 (1995).
[CrossRef]

Other (1)

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 324.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Brillouin loss width as a function of pulse duration. Pp=30 mW, Ps=2 mW. The section of fiber that is considered is under strain (200-MHz shift compared with stress-free fiber) and is located in the middle of the sensor. Its length corresponds to the pulse duration (i.e., 10 cm/ns). The total sensing length is always at least three times longer than this section.

Fig. 2
Fig. 2

Brillouin loss profiles. Extinction ratio, 30 dB; Pp=30 mW, Ps=2 mW.

Fig. 3
Fig. 3

Influence of the extinction ratio value on the local acoustic-wave intensity variations as a resonant probe pulse of 3-ns passes. Pp=30 mW, Ps=2 mW. A point of a 30-cm fiber section under strain (200-MHz shift) is considered.

Fig. 4
Fig. 4

Simulated traces of the transmitted pump for various values of the extinction ratio. A section of 30 cm obtained from a sensing length is under strain (200-MHz shift). The frequency shift is set for a resonant interaction in that section. Pp=30 mW, Ps=2 mW.

Fig. 5
Fig. 5

Loss spectra obtained with 1-ns pulses, corresponding to a section of 10 cm of fiber under various strain levels (50-, 100-, and 200-MHz shifts). The sensing length is 3 m. Extinction ratio; 30 dB; Pp=30 mW, Ps=2 mW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ep/t+Ep/z=-EsEa,
Es/t-Es/z=EpEa*,
Ea/t+1+iΔzEa=EpEs*,

Metrics