Abstract

We introduce a new class of partially coherent beams that can propagate over large distances without changing their transverse profiles and their coherence properties. Such beams are generated by an incoherent superposition of identical fully coherent beams of arbitrary form, whose axes lie on a cone.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987); J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  2. F. Gori, G. Guattari, and G. Padovani, Opt. Commun. 64, 491 (1987); V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, J. Mod. Opt. 43, 1155 (1996).
    [CrossRef]
  3. J. Turunen, A. Vasara, and A. T. Friberg, Appl. Opt. 27, 3959 (1988); G. Indebetouw, J. Opt. Soc. Am. A 6, 1748 (1989); P. Pääkkönen and J. Turunen, Opt. Commun. 156, 359 (1998).
    [CrossRef] [PubMed]
  4. K. M. Iftekharuddin and M. A. Karim, Appl. Opt. 31, 4853 (1992); R. P. Macdonald, J. Chrostowoski, S. A. Boothroyd, and A. Syrett, Appl. Opt. 32, 6470 (1993); S. Klewitz, F. Brinkmann, S. Herminghaus, and P. Leiderer, Appl. Opt. 34, 7670 (1995); R. Piestun and J. Shamir, J. Opt. Soc. Am. A 12, 3039 (1998).
    [CrossRef] [PubMed]
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Sects. 4.3.2 and 5.4.3.
    [CrossRef]
  6. J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
    [CrossRef]
  7. J. Turunen, A. Vasara, and A. T. Friberg, J. Opt. Soc. Am. A 8, 282 (1991); A. T. Friberg, A. Vasara, and J. Turunen, Phys. Rev. A 43, 7079 (1991).
    [CrossRef] [PubMed]
  8. M. W. Kowarz and G. S. Agarwal, J. Opt. Soc. Am. A 12, 1324 (1995).
    [CrossRef]
  9. M. Zahid and M. S. Zubairy, Opt. Commun. 70, 361 (1989).
    [CrossRef]
  10. C. Palma, R. Borghi, and G. Cincotti, Opt. Commun. 125, 113 (1996); M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa,  16, 106 (1999).
    [CrossRef]

1996

C. Palma, R. Borghi, and G. Cincotti, Opt. Commun. 125, 113 (1996); M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa,  16, 106 (1999).
[CrossRef]

1995

1992

1991

1989

M. Zahid and M. S. Zubairy, Opt. Commun. 70, 361 (1989).
[CrossRef]

1988

1987

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987); J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

F. Gori, G. Guattari, and G. Padovani, Opt. Commun. 64, 491 (1987); V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, J. Mod. Opt. 43, 1155 (1996).
[CrossRef]

Agarwal, G. S.

Boardman, A. D.

J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
[CrossRef]

Borghi, R.

C. Palma, R. Borghi, and G. Cincotti, Opt. Commun. 125, 113 (1996); M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa,  16, 106 (1999).
[CrossRef]

Cincotti, G.

C. Palma, R. Borghi, and G. Cincotti, Opt. Commun. 125, 113 (1996); M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa,  16, 106 (1999).
[CrossRef]

Durnin, J.

Friberg, A. T.

Gori, F.

F. Gori, G. Guattari, and G. Padovani, Opt. Commun. 64, 491 (1987); V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, J. Mod. Opt. 43, 1155 (1996).
[CrossRef]

Guattari, G.

F. Gori, G. Guattari, and G. Padovani, Opt. Commun. 64, 491 (1987); V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, J. Mod. Opt. 43, 1155 (1996).
[CrossRef]

Iftekharuddin, K. M.

Karim, M. A.

Kowarz, M. W.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Sects. 4.3.2 and 5.4.3.
[CrossRef]

Padovani, G.

F. Gori, G. Guattari, and G. Padovani, Opt. Commun. 64, 491 (1987); V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, J. Mod. Opt. 43, 1155 (1996).
[CrossRef]

Palma, C.

C. Palma, R. Borghi, and G. Cincotti, Opt. Commun. 125, 113 (1996); M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa,  16, 106 (1999).
[CrossRef]

Turunen, J.

Vasara, A.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Sects. 4.3.2 and 5.4.3.
[CrossRef]

Wu, J.

J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
[CrossRef]

Zahid, M.

M. Zahid and M. S. Zubairy, Opt. Commun. 70, 361 (1989).
[CrossRef]

Zubairy, M. S.

M. Zahid and M. S. Zubairy, Opt. Commun. 70, 361 (1989).
[CrossRef]

Appl. Opt.

J. Mod. Opt.

J. Wu and A. D. Boardman, J. Mod. Opt. 38, 1355 (1991).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

F. Gori, G. Guattari, and G. Padovani, Opt. Commun. 64, 491 (1987); V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, J. Mod. Opt. 43, 1155 (1996).
[CrossRef]

M. Zahid and M. S. Zubairy, Opt. Commun. 70, 361 (1989).
[CrossRef]

C. Palma, R. Borghi, and G. Cincotti, Opt. Commun. 125, 113 (1996); M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa,  16, 106 (1999).
[CrossRef]

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Sects. 4.3.2 and 5.4.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Illustration of the generation of a partially coherent conical beam by incoherent superposition of coherent Bessel beams.

Fig. 2
Fig. 2

Intensity distribution Iρ,z in a transverse plane (dashed curves) and the spectral degree of spatial coherence μ0,ρ,z (solid curves) for a partially coherent Bessel–Gauss beam characterized by parameters θ0=1 mrad, θc=0.3 mrad, w0=6 mm, and λ=632.8 nm. The plots are shown for the following propagation distances z: (a) 0, (b) 0.3 m, (c) 1.0 m, (d) 3.0 m, (e) 8.0 m.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

W0ρ1,ρ2=fρ1fρ2gρ1-ρ2,
zˆ=cos φc sin θc,sin φc sin θc,cos θc,
z=r·zˆ=r sin θ sin θc cosφ-φc+r cos θ cos θc,
ρ=r2-z2.
Er=02πdφc2πAφcEcr,
A*φcAφc=2πδφc-φc
Wr1,r2=02πdφc2πEc*r1Ecr2,
Ecr=11+iz/zRJ0k0ρ sin θ01+iz/zRexp-ρ2/w021+iz/zR×expik0z1-sin2 θ021+iz/zR,
W0ρ1,ρ2=J0k0ρ1 sin θ0exp-ρ12/w02×J0k0ρ2 sin θ0exp-ρ22/w02×J0k0 sin θcρ1-ρ2.
ρ=r2-z2=ρ2+z2-z21/2.
z1/k0θcθ0
zw0/θ0.

Metrics