Abstract

A very fast >100 kHz acousto-optic scanning system, which relies on two counterpropagating acoustic waves with the same frequency modulation, is proposed and experimentally demonstrated. This scheme completely suppresses linear frequency chirp and thus permits very fast nonlinear scans and nonconstant linear scans. By changing the phase between the modulating signals, this scheme also provides very fast longitudinal scans of the focal point.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).
  2. A. VanderLugt and A. M. Bardos, Appl. Opt. 31, 4058 (1992).
    [CrossRef] [PubMed]
  3. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
    [CrossRef]
  4. R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
    [CrossRef] [PubMed]
  5. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
    [CrossRef] [PubMed]
  6. One- and two-dimensional nonlinear scans can also be obtained with two and four acoustic transducers, respectively, attached to a single crystal.
  7. Our analysis is readily adapted for other laser beam shapes, with small changes of numerical constants.
  8. N. Davidson, A. A. Friesem, and E. Hasman, Appl. Opt. 31, 5426 (1992).
    [CrossRef] [PubMed]
  9. N. Davidson and A. A. Friesem, J. Opt. Soc. Am. A 10, 1725 (1993).
    [CrossRef]
  10. Brimrose Model TEF-110-60.
  11. The condition fmax<2fmin ensures the separation of the +1,-1 diffraction order from the +1,0 one.
  12. O. Bryngdahl and W. H. Lee, Appl. Opt. 15, 183 (1976).
    [CrossRef] [PubMed]

2000

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

1993

1992

1976

Bardos, A. M.

Bryngdahl, O.

Chevy, F.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Dalibard, J.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Davidson, N.

Durfee, D. S.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Friedman, N.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Friesem, A. A.

Hasman, E.

Ketterle, W.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Khaykovich, L.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Kohl, M.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Kuklewicz, C. E.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Lee, W. H.

Madison, K. W.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Onofrio, R.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Ozeri, R.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Raman, C.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

VanderLugt, A.

A. VanderLugt and A. M. Bardos, Appl. Opt. 31, 4058 (1992).
[CrossRef] [PubMed]

A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).

Wohlleben, W.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

Phys. Rev. A

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Phys. Rev. Lett.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Other

One- and two-dimensional nonlinear scans can also be obtained with two and four acoustic transducers, respectively, attached to a single crystal.

Our analysis is readily adapted for other laser beam shapes, with small changes of numerical constants.

A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).

Brimrose Model TEF-110-60.

The condition fmax<2fmin ensures the separation of the +1,-1 diffraction order from the +1,0 one.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: A laser beam is modulated by a fast acousto-optic modulator (AOM) and collimated. The beam then passes through two AOS’s with opposite acoustic waves carrying the same (nonlinear) frequency chirp. The +1,0 order, which is modulated by only one AOS, has a reduced NRP, owing to the varying chirp. However, the +1,-1 order, which is modulated by both AOS, has larger NRP, owing to suppression of the first-order chirp.

Fig. 2
Fig. 2

Measured intensity cross sections at the focal plane, for a cosine scan with one acoustic wave at a scan frequency of A, 1  kHz and B, 140  kHz. At each frequency, three spots are shown: at the extreme right (pulse at t0), center tTscan/4, and extreme left tTscan/2 of the scanning range.

Fig. 3
Fig. 3

Same as Fig. 2 but for a cosine scan with two opposite acoustic waves.

Fig. 4
Fig. 4

Measured maximal spot size (FWHM) at the center of the scanning range tTscan/4 for a cosine scan with × one and two opposite acoustic waves as a function of the modulation frequency.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

NRPstatic=ΔfD/v=ΔfTaccess.
NRPdynamic,linearΔfTscan.
NRPdynamic,randomΔfTscan1/2.
αx,t=λvft+x/v+ft-x/v,
ft=f0+12Δf cos2πt/Tscan,
αx,t=λv2f0+Δf coskscanxcos2πt/Tscan,
NRPdynamicnewΔfTscan2/3
41/3fmaxΔf-1/3ΔfTscan2/3.

Metrics