Abstract

We propose a new passive optical thresholding device that combines the principles of multimode interference (MMI) with self-guiding. The multimode region is composed of a nonlinear optical material that will support a self-guided beam (i.e., a material with a positive Kerr nonlinearity). The device operates by switching between the MMI mode of operation and the self-guiding mode of operation, depending on the input light intensity. We describe the basic principles of a self-guiding MMI device, simulate the device, and discuss design issues associated with these optically controlled optical switches.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Jenkins, R. W. J. Devereaux, and J. M. Heaton, Opt. Lett. 17, 991 (1992).
    [CrossRef] [PubMed]
  2. Y. Silberberg and P. W. Smith, “Integrated all-switching devices,” U.S. patent4,856,860 (August15, 1989).
  3. S. Blair and K. Wagner, Appl. Opt. 38, 6749 (1999).
    [CrossRef]
  4. R. Ulrich and T. Kamiya, J. Opt. Soc. Am. 68, 583 (1978).
  5. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  6. R. Ulrich, Opt. Commun. 13, 259 (1975).
    [CrossRef]
  7. N. N. Akhmediev, Opt. Quantum Electron. 30, 535 (1998).
    [CrossRef]
  8. V. M. Malkin, Physica D 64, 251 (1993).
    [CrossRef]
  9. M. Segev and G. I. Stegeman, Phys. Today 51(8), 42 (1998).
    [CrossRef]
  10. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 25, 254 (2000).
    [CrossRef]
  11. B. L. Lawrence and G. I. Stegeman, Opt. Lett. 23, 591 (1998).
    [CrossRef]
  12. G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
    [CrossRef]
  13. The growth of ∼1‐µm-thick thin films was described by M. K. Thakur, Y. Shani, G. C. Chi, and K. O’Brien, Synth. Met. 28, D595 (1989).
    [CrossRef]
  14. M. Segev, Opt. Quantum Electron. 30, 503 (1998).
    [CrossRef]

2000 (1)

1999 (1)

1998 (4)

M. Segev, Opt. Quantum Electron. 30, 503 (1998).
[CrossRef]

B. L. Lawrence and G. I. Stegeman, Opt. Lett. 23, 591 (1998).
[CrossRef]

M. Segev and G. I. Stegeman, Phys. Today 51(8), 42 (1998).
[CrossRef]

N. N. Akhmediev, Opt. Quantum Electron. 30, 535 (1998).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

1993 (1)

V. M. Malkin, Physica D 64, 251 (1993).
[CrossRef]

1992 (1)

1990 (1)

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

1989 (1)

The growth of ∼1‐µm-thick thin films was described by M. K. Thakur, Y. Shani, G. C. Chi, and K. O’Brien, Synth. Met. 28, D595 (1989).
[CrossRef]

1978 (1)

1975 (1)

R. Ulrich, Opt. Commun. 13, 259 (1975).
[CrossRef]

Aggarwal, I. D.

Akhmediev, N. N.

N. N. Akhmediev, Opt. Quantum Electron. 30, 535 (1998).
[CrossRef]

Blair, S.

Cheong, S.-W.

Chi, G. C.

The growth of ∼1‐µm-thick thin films was described by M. K. Thakur, Y. Shani, G. C. Chi, and K. O’Brien, Synth. Met. 28, D595 (1989).
[CrossRef]

Devereaux, R. W. J.

Heaton, J. M.

Hwang, H. Y.

Jenkins, R. M.

Kamiya, T.

Katsufuji, T.

Lawrence, B. L.

Lenz, G.

Lines, M. E.

Malkin, V. M.

V. M. Malkin, Physica D 64, 251 (1993).
[CrossRef]

O’Brien, K.

The growth of ∼1‐µm-thick thin films was described by M. K. Thakur, Y. Shani, G. C. Chi, and K. O’Brien, Synth. Met. 28, D595 (1989).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Sanghera, J. S.

Segev, M.

M. Segev and G. I. Stegeman, Phys. Today 51(8), 42 (1998).
[CrossRef]

M. Segev, Opt. Quantum Electron. 30, 503 (1998).
[CrossRef]

Shani, Y.

The growth of ∼1‐µm-thick thin films was described by M. K. Thakur, Y. Shani, G. C. Chi, and K. O’Brien, Synth. Met. 28, D595 (1989).
[CrossRef]

Silberberg, Y.

Y. Silberberg and P. W. Smith, “Integrated all-switching devices,” U.S. patent4,856,860 (August15, 1989).

Slusher, R. E.

Smith, P. W.

Y. Silberberg and P. W. Smith, “Integrated all-switching devices,” U.S. patent4,856,860 (August15, 1989).

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Spalter, S.

Stegeman, G. I.

M. Segev and G. I. Stegeman, Phys. Today 51(8), 42 (1998).
[CrossRef]

B. L. Lawrence and G. I. Stegeman, Opt. Lett. 23, 591 (1998).
[CrossRef]

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

Thakur, M. K.

The growth of ∼1‐µm-thick thin films was described by M. K. Thakur, Y. Shani, G. C. Chi, and K. O’Brien, Synth. Met. 28, D595 (1989).
[CrossRef]

Ulrich, R.

Wagner, K.

Wright, E. M.

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

Zimmermann, J.

Appl. Opt. (1)

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

R. Ulrich, Opt. Commun. 13, 259 (1975).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (3)

M. Segev, Opt. Quantum Electron. 30, 503 (1998).
[CrossRef]

N. N. Akhmediev, Opt. Quantum Electron. 30, 535 (1998).
[CrossRef]

G. I. Stegeman and E. M. Wright, Opt. Quantum Electron. 22, 95 (1990).
[CrossRef]

Phys. Today (1)

M. Segev and G. I. Stegeman, Phys. Today 51(8), 42 (1998).
[CrossRef]

Physica D (1)

V. M. Malkin, Physica D 64, 251 (1993).
[CrossRef]

Synth. Met. (1)

The growth of ∼1‐µm-thick thin films was described by M. K. Thakur, Y. Shani, G. C. Chi, and K. O’Brien, Synth. Met. 28, D595 (1989).
[CrossRef]

Other (1)

Y. Silberberg and P. W. Smith, “Integrated all-switching devices,” U.S. patent4,856,860 (August15, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Critical intensity versus beam width FW1/eM for 4BCMU n0=1.53 and PTS n0=1.66, with λ0=1550 nm and n2=2×10-4 µm2/W.

Fig. 2
Fig. 2

(a) 2NoMIDS concept: Filled circle, location of the multimode image; straight line, path of the self-guided beam. (b) Ideal transmission versus intensity curve. Solid curve, output A; dashed curve, output B.

Fig. 3
Fig. 3

Normalized electric field intensity in a 2No-MIDS for various input intensities I: (a) 0 W/µm (i.e., no nonlinearity), (b) 90 W/µm, (c) 150 W/µm, and (d) 240 W/µm. The structure details are described in the text.

Fig. 4
Fig. 4

2NoMIDS simulated transmission versus input intensity. The parameters are the same as for Fig. 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L14ngWe2λ0,
Icr=π8λ02π2n0w0n2.

Metrics