Abstract

We report on spectroscopic real-time detection of  13CH4 in ambient air. Our measurements were carried out by means of cavity leak-out absorption spectroscopy employing a tunable cw laser in the mid-infrared spectral region near λ=3 µm. A CO laser in combination with tunable microwave sideband generation was used as the light source. Using a 50-cm-long ringdown cell with R=99.98% mirrors, we achieved a detection limit of 290 parts in 1012 (ppt)  13CH4 in ambient air (integration time, 100 s). The corresponding noise-equivalent absorption coefficient was 5×10-9/cm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. HITRAN96 database; www.hitran.com.
  2. P. J. Crutzen, Nature 350, 380 (1991).
    [CrossRef]
  3. P. Bergamaschi, M. Schupp, and G. W. Harris, Appl. Opt. 33, 7704 (1994).
    [CrossRef] [PubMed]
  4. K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
    [CrossRef]
  5. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
    [CrossRef]
  6. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
    [CrossRef]
  7. K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).
  8. M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
    [CrossRef]
  9. M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
    [CrossRef]
  10. M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
    [CrossRef]
  11. C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
    [CrossRef]

2000

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

1999

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
[CrossRef]

1998

1996

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

1995

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

1994

1991

P. J. Crutzen, Nature 350, 380 (1991).
[CrossRef]

Baillargeon, J. N.

Bergamaschi, P.

Bucher, C. R.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

Capasso, F.

Cho, A. Y.

Crutzen, P. J.

P. J. Crutzen, Nature 350, 380 (1991).
[CrossRef]

Curl, R. F.

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
[CrossRef]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Dlugokencky, E. J.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Fraser, G. T.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

Frech, B.

Gmachl, C.

Harris, G. W.

Hering, P.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Hollberg, L.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Hutchinson, A. L.

Kachanov, A. A.

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

Kayser, T.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Kleine, D.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Kosterev, A. A.

Lancaster, D. G.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Lehmann, K.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

Limpert, J.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Lotze, R.

Mürtz, M.

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
[CrossRef]

Palm, P.

Petrov, K. P.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Plusquellic, D. F.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

Richter, D.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Romanini, D.

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

Sadeghi, N.

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

Schupp, M.

Simon, U.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Sivco, D. L.

Stoeckel, F.

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

Stry, S.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Tittel, F. K.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
[CrossRef]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Urban, W.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
[CrossRef]

Waltman, S.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Weidner, R.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Appl. Opt.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

P. Bergamaschi, M. Schupp, and G. W. Harris, Appl. Opt. 33, 7704 (1994).
[CrossRef] [PubMed]

Appl. Phys. B

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Chem. Phys. Lett.

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

Nature

P. J. Crutzen, Nature 350, 380 (1991).
[CrossRef]

Opt. Commun.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Opt. Lett.

Proc. SPIE

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Other

HITRAN96 database; www.hitran.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: RP’s Rochon polarizers; L, lenses, M’s, cavity mirror’s; EOM, electro-optic modulator; PD’s, photodiodes; PZT, piezoceramic transducer; Mono, monochromator; trig., trigger; sig., signal.

Fig. 2
Fig. 2

a, Experimental cavity leak-out signal versus time (single shot with exponential fit superimposed). The laser is turned of near t=11 µs. The decay time is 5.86±0.03 µs. b, Experimental cavity leak-out signal (100 averages with exponential fit superimposed). The decay time is 5.826±0.013 µs.

Fig. 3
Fig. 3

Real-time spectrum of  13CH4 in ambient air. We selected three transitions of the methane ν3 band: R3 A21, R3 F21 1, and R3 F11 1 (from left to right). The cell pressure is 50 mbars, and the temperature is 293 K. The observed fraction of  13CH4 is 21±0.6 ppb. The error bars indicate the 1σ uncertainty of the measurement. For comparison, the absorption given by the hitran96 database is shown by the solid curve.

Fig. 4
Fig. 4

Empty cavity decay time versus time. For an observation time of 100 s the relative 1σ uncertainty of the mean value is 1.1×10-3, corresponding to a noise-equivalent absorption of 5×10-9/cm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

kν=1c1τ-1τ0,

Metrics