Abstract

A new method of distributed in-fiber Bragg grating sensing is proposed. A method is outlined by which the strain field imposed upon a Bragg grating sensor is obtained by measurement of the sensor’s reflectivity and delay characteristics. The proposal is demonstrated by interrogation of two loaded samples. Strain distributions from these experiments are compared against a theoretical estimate. The data treatment is also discussed. Strain resolution is found to be ±24 µ, with a spatial resolution defined by a minimum spatial wavelength component of the coupling distribution of 1.65 mm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Electro. Lett. 33, 1242 (1997).
    [CrossRef]
  2. M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dankin, Electron. Lett. 32, 1028 (1996).
    [CrossRef]
  3. H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).
    [CrossRef]
  4. R. Shiro, Y. Horiuchi, and K. Mochizuki, J. Lightwave Technol. 7, 1177 (1989).
    [CrossRef]
  5. S. Meguid, Engineering Fracture Mechanics (Elsevier, New York, 1989).

1997

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Electro. Lett. 33, 1242 (1997).
[CrossRef]

1996

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dankin, Electron. Lett. 32, 1028 (1996).
[CrossRef]

1989

R. Shiro, Y. Horiuchi, and K. Mochizuki, J. Lightwave Technol. 7, 1177 (1989).
[CrossRef]

1976

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).
[CrossRef]

Chwang, J.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Electro. Lett. 33, 1242 (1997).
[CrossRef]

Cole, M. J.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dankin, Electron. Lett. 32, 1028 (1996).
[CrossRef]

Dankin, J. P.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dankin, Electron. Lett. 32, 1028 (1996).
[CrossRef]

Geiger, H.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dankin, Electron. Lett. 32, 1028 (1996).
[CrossRef]

Horiuchi, Y.

R. Shiro, Y. Horiuchi, and K. Mochizuki, J. Lightwave Technol. 7, 1177 (1989).
[CrossRef]

Huang, S. Y.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Electro. Lett. 33, 1242 (1997).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).
[CrossRef]

Measures, R. M.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Electro. Lett. 33, 1242 (1997).
[CrossRef]

Meguid, S.

S. Meguid, Engineering Fracture Mechanics (Elsevier, New York, 1989).

Mochizuki, K.

R. Shiro, Y. Horiuchi, and K. Mochizuki, J. Lightwave Technol. 7, 1177 (1989).
[CrossRef]

Ohn, M. M.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Electro. Lett. 33, 1242 (1997).
[CrossRef]

Shiro, R.

R. Shiro, Y. Horiuchi, and K. Mochizuki, J. Lightwave Technol. 7, 1177 (1989).
[CrossRef]

Volanthen, M.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dankin, Electron. Lett. 32, 1028 (1996).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).
[CrossRef]

Electro. Lett.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Electro. Lett. 33, 1242 (1997).
[CrossRef]

Electron. Lett.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dankin, Electron. Lett. 32, 1028 (1996).
[CrossRef]

J. Lightwave Technol.

R. Shiro, Y. Horiuchi, and K. Mochizuki, J. Lightwave Technol. 7, 1177 (1989).
[CrossRef]

Other

S. Meguid, Engineering Fracture Mechanics (Elsevier, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical arrangement. MZ, Mach–Zehnder; RF, radio frequency.

Fig. 2
Fig. 2

Loading apparatus.

Fig. 3
Fig. 3

Reflectivity and group-delay results.

Fig. 4
Fig. 4

Theoretical and measured strain results in the vicinity of a circular hole.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

κzexp-iψz=-2nλ020rλexp-4πniλ-λ0λ02zdλ,
rλ=Rλexp-iθλ,
zz=-dψz/dzΛ02π1-n2p12-νp11+p12/2.
τλ=-dθλ/dω.
θλ=2πcλ1λ2τλ/λ2dλ.
κl=-2nλ02mrm exp-4πniλm-λ0λ02zlWλmΔλm,
Wλ=121+cosλ-λλ1-λ,
fmax<nΔλ/λ02,
Erms=1/z2-z1z1z2meas-theo2dz1/2.

Metrics