Abstract

We experimentally demonstrate amplitude and phase shaping of femtosecond mid-infrared pulses in a range centered about 14 µm. Single pulses with a tailored optical phase and phase-locked double pulses are generated by phase-matched difference-frequency mixing in a GaSe crystal of near-infrared pulses shaped with a liquid-crystal modulator. The electric field transients are directly measured by free-space electro-optic sampling, yielding pulse durations of 200–300 fs. Our data are in good agreement with a model that describes phase-matched optical rectification.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds., Ultrafast Phenomena XI (Springer-Verlag, Berlin, 1998).
    [CrossRef]
  2. W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
    [CrossRef] [PubMed]
  3. A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
    [CrossRef]
  4. J. J. Baumberg, A. P. Heberle, K. Köhler, and K. Ploog, J. Opt. Soc. Am. B 13, 1246 (1996).
    [CrossRef]
  5. M. S. Pshenichnikov, W. P. de Boeij, and A. Wiersma, Opt. Lett. 19, 572 (1994).
    [CrossRef] [PubMed]
  6. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
    [CrossRef]
  7. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  8. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
    [CrossRef]
  9. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
    [CrossRef]
  10. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
    [CrossRef]

2000 (2)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

1999 (1)

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

1998 (1)

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

1997 (1)

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Assionet, A.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Baumberg, J. J.

Baumert, T.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Bergt, M.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Brixner, T.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

de Boeij, W. P.

Eickemeyer, F.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Elsaesser, T.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Gerber, G.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Heberle, A. P.

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Kaindl, R. A.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Kiefer, B.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Köhler, K.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Ploog, K.

Pshenichnikov, M. S.

Rabitz, H.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Seyfried, V.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Strehle, M.

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

Warren, W. S.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Wiersma, A.

Woerner, M.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Zhang, X.-C.

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Science (2)

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

A. Assionet, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef]

Other (1)

See, e.g., T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds., Ultrafast Phenomena XI (Springer-Verlag, Berlin, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup for generation and characterization of amplitude- and phase-shaped femtosecond pulses in a frequency range up to 40 THz. The ultrafast electric field transients are generated by phase-matched difference-frequency mixing in a GaSe crystal of shaped NIR pulses by use of a liquid-crystal modulator (LCM). The electric field transients generated are directly measured by ultrafast free-space electro-optic sampling. (b) Schematic showing the propagation of the ordinary o and the extraordinary eo components of two phase-locked NIR pump pulses. Group-velocity mismatch between the ordinary and the extraordinary waves leads to coincidence of the extraordinary component of the second pulse with the ordinary component of the first.

Fig. 2
Fig. 2

Electric field transients of MIR pulses measured with free-space electro-optic sampling. The pulses centered about λ=13.7 µm are generated by a pair of phase-locked pump pulses with 60-fs separation. (a), (b) Transients generated when each pump pulse is applied separately. (c) Applying two pump pulses. Inset, Fourier transform of the waveform of a single pulse, showing the pulse spectrum. (d)–(f) Corresponding theoretical curves from the model discussed in Ref. 8.

Fig. 3
Fig. 3

MIR waveforms generated by two NIR pulses with distances of (a) Δt=23 fs (corresponding to a λ/2 retardation of the MIR phase) and (b) Δt=46 fs. The relative phase between phase-locked NIR pump pulses, ΔΦ, is 0 (solid curves) and π (dashed curves). Inset, enlarged time window near 300 fs. Corresponding model calculations are shown in (c) and (d).

Metrics